Analysis and Design for E-Business Systems

((((((((((((((((((((((((((((((((((

Table of Contents
31
Introduction

31.1
Aim of this module

41.2
Models of e-commerce

41.2.1
What is a business model?

51.2.2
Current business models

91.3
Evolution of e-commerce

112
SWAT e-commerce analysis and design methodology

112.1
Introduction

112.1.1
The Waterfall Approach

112.1.2
Boehm's Spiral Development Method

122.1.3
Incremental Approaches

122.2
The SWAT lifecycle

122.2.1
Introducing the SWAT Lifecycle

132.2.2
Strategic Feasibility

152.2.3
Requirements Elicitation

162.2.4
System Analysis

162.2.5
System Design

162.2.6
Component Build and Testing

172.2.7
Functional Testing

172.2.8
System Deployment

172.2.9
System Operation

172.2.10
Evaluation

182.3
Techniques in the context of SWAT Framework

203
SWAT techniques

203.1
Use case modelling

203.1.1
Use case diagram

223.1.2
Identifying use cases

233.1.3
Common Mistakes

233.1.4
Relationships between use cases and actors

263.1.5
Use cases realisation

273.2
Class and Object Diagrams

273.2.1
Static modelling – class diagrams

273.2.2
Class

283.2.3
How to find classes?

283.2.4
Class attributes

283.2.5
Features of class attributes

293.2.6
Class operations

293.2.7
Relationships between classes

333.2.8
Dynamic modelling – interaction diagrams

343.3
Interaction Diagrams

343.3.1
Sequence diagrams

373.3.2
Collaboration diagrams

393.4
State Transition and Activity Diagrams

403.4.1
Modelling state of an object

403.4.2
State diagram

423.5
Prototyping and JAD/RAD techniques

423.5.1
Prototyping Generally

423.5.2
Evolutionary v Disposable Prototyping for e-commerce systems

423.5.3
JAD/RAD Techniques

433.6
Softer Systems Methods

433.6.1
Introduction

433.6.2
Brainstorming

443.6.3
Root Definitions

443.6.4
CATWOE

453.6.5
Rich pictures and other informal models

463.6.6
Storyboarding

463.7
Testing Techniques

463.7.1
Introduction

473.7.2
Incremental v Regression Testing

473.7.3
Use Case scenario testing

473.7.4
Prototype Reviews

483.7.5
Structured Walkthroughs

483.7.6
Build testing

483.7.7
User Acceptance Testing (pre-release)

513.7.8
Post Implementation Monitoring

513.8
Performance Agreements

523.9
Component diagrams

523.9.1
Design with component diagrams

533.10
System Deployment

55Appendix A
 Case Study - The HotHouse

58Appendix B
 References

1 Introduction

1.1 Aim of this module

The rapidly evolving e-commerce environment demands an approach to developing e-commerce applications that is flexible, fast and responsive. These applications must be functional and robust. They and also tend to be complex, not least when implemented into an established legacy environment..

A rigorous analysis and design process will enhance the chances of a complex application being robust, as well as meeting its functional requirements. Traditional structured analysis and design tends to be an onerous process that is neither flexible, fast nor responsive.

This module proposes a series of techniques that, when used in the context of the suggested methodological framework, provides an approach with which robust, functional e-commerce applications can be developed, yet is also flexible, fast, responsive to change and suitable for Object Oriented implementations.

The core of the framework is the major techniques of the Unified Modelling Language (UML). These are supplemented by a number of other techniques from other approaches to analysis and design. The methodological framework identifies which techniques are most appropriate under which circumstances and how they should be used at each stage of the software development lifecycle.

The development of e-commerce systems is placed firmly in the context of the business. The application of the techniques and tools within the methodological framework to analyse and design solutions for a real-life e-commerce application is illustrated throughout the module with reference to a case study.

1.2 Models of e-commerce

Many companies seek to gain competitive advantage through innovation in processes and organisation. E-commerce technologies, see Figure 1.1, provide tremendous opportunities for companies to innovate in terms of lower prices, better service, and improved quality whilst providing the customer with a much wider product choice with greater purchasing convenience. These and similar benefits can be combined

[image: image1]
Figure 1.1 E-commerce technology supporting business.
with reduced operating costs and increased productivity. Although e-commerce technologies can significantly improve business processes, they also pose threats to business such as reduced customer loyalty arising from the reduced costs of customers switching to other suppliers. In order to make effective use of e-commerce to empower businesses, new business models are required.

1.2.1 What is a business model?

There are different ways of defining business models. One definition is that a business model is an architecture for product, service and information flows that involve a number of business participants (actors) and their responsibilities, both internal and external to an organisation. A business model allows potential benefits for business actors and sources of revenue to be identified.

1.2.2 Current business models

Different types of business models are implemented for e-commerce. Amazon.com, Yahoo.com and others have helped to define industry categories and business models for Web-based trading. Entrepreneurs new to e-commerce need to be aware of these models and how to implement them effectively.

Companies may adopt a business model for selling products and services directly to customers and/or forming electronic relationships with their distributors, resellers, suppliers and other partners. Another business model describes the management of the corporate knowledge base and information sharing within the company. This is particularly important for a company, which has branches at different geographical locations. The business models used for these three different kinds of e-commerce can be categorised as Business-to-Consumer (B2C), Business-to-Business (B2B), Business-to-Employee (B2E). These are shown in Figure 1.2.

[image: image2.wmf]Consumer

Company

Staff

Trading

Partner

Internal

Company

Systems

B2E

B2B

B2C

Figure 1.2 Diagrammatic view of e-commerce business models.
Business-to-Consumer

B2C e-commerce deals with retail transactions with individual online purchasers. A company can adopt a B2C model to provide an electronic storefront, e.g., e-shops and e-malls where customers can online browse information about products and services as well as buy products. The dot.com companies use B2C for providing information services, e.g., Yahoo and Amazom.com, which sells books online as well as a variety other kinds of product and service. The characteristics of this kind of business model are that information, which may be the interest of customers, is consolidated, categorised and searchable Products are therefore easy to find and online transactions can be made readily, using built-in secure payment systems.

[image: image3]A B2C model is popularly adopted by businesses seeking to create an efficient distribution channel for selling their products. It brings benefits for sellers in increased profits from selling their products to a large range of customers, and to buyers in getting free choices and good offerings from online purchasing products. With current technology, a company can quickly create a B2C Web presence to reach a wide range of customers. Depending on the characteristics of the product and the company itself this Web presence may grow the business rapidly. Implementing an interactive B2C requires functionality, which can be performed within the system architecture shown in Figure 1.3.

A web application of B2C should be integrated with the existing business data sources in the company. In this way the right information is provided about the products/services, web pages are updated consistently and constantly and orders and deliveries are processed efficiently. It is therefore necessary to incorporate coherent business activities into the system to perform functions which meet the business requirements and satisfy the customers’ demands.

Business-to-business

B2B e-commerce links business corporations which participate in sales, purchase and related transactions via networks. In this way connected companies can exchange business data and documents. They can send their order requests, check supplier’s inventory level, negotiate prices, arrange shipment and billing through the Internet. A wide range of information is available for access to:

	Product/service
	· specifications, prices, sales history

	Customer
	· sales forecasts, demography, purchasing behaviour

	Supplier
	· product lines, lead times, sales terms and conditions

	Product process
	· capacities, commitments, product plans on demand

	Delivery
	· carriers, lead times, costs

	Inventory
	· inventory levels, carrying costs, locations

	Competitors
	· benchmarking, competing products, market share

	Sales and marketing
	· point of sales, promotions

	Supply chain alliance
	· key contracts, schedules, roles and responsibilities

	Supply chain process and performance
	· process descriptions, performance measures quality, delivery time, customer satisfaction

B2B is currently a big and booming area. It is expected to grow to in excess of $1330 billion by 2003 and continue to be the major share of the e-commerce market (Freeman, 1998). The leading business areas in the adoption of B2B e-commerce are computing, electronics, motor vehicles, petrochemicals, utilities, paper/office products, shipping/warehousing, food and agriculture (Anders, 1998).

[image: image4]One of the important issues related to B2B is that an effective enterprise information system must provide effective support for supply chain and customer relationship management. Since supply chain management encompasses the coordination of order generation, price negotiation, order taking, and order fulfilment/distribution of products, services and related information (Kalakota and Whinston, 1997), a B2B web-based system, illustrated in Figure 1.4, involves the following stakeholders, related systems and architecture elements:

· selling companies, through marking/sales management

· buying companies, through procurement management

· electronic intermediaries as third-party intermediating service providers for processing transaction and payment, communication hosting and applications rental;

· suppliers who fulfil Just In Time (JIT) delivery criteria

· network platforms such as the Internet, intranet, and extranet

· protocol standards for data exchange, e.g., EDI, XML and software agents;

· back-end information systems of all the companies within the B2B, e.g., the integrated intranet systems and ERP which provide the real-time information for products, customers, and order tracking.

To implement a B2B system, the requirements from each and all of these stakeholders must be incorporated into a design that will ensure the system serves the purpose of all the parties connected in the trading network.

B2E

[image: image5]This type of business model is also referred to as an organisation’s Intranet system. Companies create a Web-based intranet system as a single source of corporate business intelligence. It can provide services at two levels: increasing awareness by sharing information and communication; and/or supporting business processes by integrating corporate data and applications. A B2E system is illustrated in Figure 1.5.

A set of generic functions of an intranet system includes:

· corporate/department/individual web pages

· access to databases

· search engines and directories which assist finding interesting and valuable information quickly

· interactive communication by using the means of, audio, videoconferencing netmeetings and chat

· document distribution and workflow from web-based downloading and routing of documents

· email and bulletin boards, possibly enabled and supported by groupware

· telephony with a support of integrated enterprise information systems

· interface to the Internet for online sales and purchasing,

· Extranet links between geographically dispersed branches, customers, and suppliers to relevant information, (with the necessary levels of access control)

A company can greatly improve the efficiency and quality of its internal business process and communication. Employees from different departments can gain access to information from one single source, kept at different levels of confidentiality within the company, which is updated by the authorised personnel. An intranet system is so important that it is considered as a critical component of an e-commerce system. With an efficient intranet-based corporate information system, aB2B e-commerce platform can then be integrated to effectively deliver and support the business.

1.3 Evolution of e-commerce

[image: image6]As e-commerce evolves, companies have taken the advantage of the three types of business model to transform their business. A new trend of e-commerce has shown that companies are gradually integrating B2C, B2B and B2E models into their business processes to cope with dynamic business changes, adjust customers’ demand on quality services as well as to maintain business relationships with their suppliers and partners. Figure 1.6 illustrates a system architecture of the integrated business models adopted by companies. In this e-commerce architecture, the business processes, such as procurement, sales, fulfilment, and payment can be carried out in a coherent manner. The company can establish a long-term relationship with its customers and suppliers by using Supply Chain Management (SCM) and Customer Relationship Management (CRM) as the strategic instrument to enforce companies’ positions in the marketplace.

The advantages for companies of integrating these business models include:

· Expanding market reach. E-commerce systems allow companies to reach their current customers beyond geographic locations, as well as collect experience with a new customer segment and the new medium Internet.

· Generating visibility.

· Strengthening business relationships.

· Increasing responsiveness.

· Offering new services.

· Reducing cost.

· Preventing channel conflicts.

The aim of implementing the right business model in e-commerce is not only to gain these advantages but is also determined by the enterprise information systems which perform the right functions and provide the right information. Companies should therefore ensure that e-commerce systems incorporate the main functions of B2C, B2B and B2E.

It is true that the development of e-commerce systems should be carried out systematically by following a methodology. There are numerous approaches, such as the traditional systems development lifecycle "waterfall" model, Rapid Application Development (RAD) and Object Oriented techniques that have spawned methodologies and the UML (Booch, et al., 1999). They are in many cases still useful in guiding the core of enterprise information systems analysis and design, but they require modification and extension for application to e-commerce systems.

A key issue for most enterprise developing e-commerce systems is that these systems must enable their customers to easily find information or area of interest, and efficiently execute transactions. This means that e-commerce systems must have clear and concise design goals which are tied to the business strategies and requirements implying measurable business value and quantified design points that can be monitored for correctness.

A quality design of e-commerce systems can be measured by the following factors:

· Correctness. The extent to which a design component of an e-commerce system satisfies its functional specification and users’ objectives.

· Efficiency. The requirement that the applications and software modules use the optimal amount of computing to perform the specification they are designed to satisfy.

· Flexibility. For a rapid business change and technology evolution, software and hardware environment should be able to be modified to meet new requirements.

· Interoperability. The ability of heterogeneous data, applications, and platforms to communication and cooperate in problem-solving objectives.

· Maintainability. The effort required modifying and upgrading systems, or components of systems should be minimal.

· Portability. The ability of software or hardware to operate on multiple platforms without having to be reworked.

· Reliability. Systems perform according to their specifications that are required by users.

· Reusability. Software and hardware components can be reused in other systems design solutions.

· Testability. The effort required to test software units, components and integrated systems that ensure their performance up to the specifications.

The SWAT methodology introduced in this chapter will provide a set of guideline for e-commerce systems’ developers to understand business requirements; define e-commerce systems’ specifications; design the system performing the right functions. The phases in the SWAT methodology will be described in the following chapter.

2 SWAT e-commerce analysis and design methodology

2.1 Introduction

A number of approaches have been developed in response to the changing business demands placed upon software developments and the capabilities of available technologies. Each of these approaches has its own advantages and disadvantages. Three of the main approaches are outlined below

2.1.1 The Waterfall Approach

The traditional software development "waterfall method" method shown below was developed in the 1970s to apply structure, rigour and well-defined and manageable deliverables to the development of increasingly complex systems. Each phase of the development proceeds serially to the next throughout the life of the project.

[image: image36.wmf]Customer

PublicCustomer

RegisteredCustomer

generalisation

Customer

PublicCustomer

RegisteredCustomer

generalisation

[image: image37.wmf]HH

staff

Course

registration

Room booking

Schedule

course

<<include>>

<<include>>

Receptionist

Student

HH

staff

Course

registration

Room booking

Schedule

course

<<include>>

<<include>>

Receptionist

Student

[image: image38.wmf]Customer

Search for

product/service

Register a

member

HH

staff

Course

registration

Room booking

Update

information

Schedule

course

<<include>>

<<include>>

Student

Update

facility’s

information

Update

customer’s

information

<<include>>

<<include>>

Refuse

member

<<

extend

>>

[invalid credit

card No]

Receptionist

On

-

line Registration System

Customer

Search for

product/service

Register a

member

HH

staff

Course

registration

Room booking

Update

information

Schedule

course

<<include>>

<<include>>

Student

Update

facility’s

information

Update

customer’s

information

<<include>>

<<include>>

Refuse

member

<<

extend

>>

[invalid credit

card No]

Receptionist

On

-

line Registration System

[image: image39.wmf]Customer

Search for

product/service

Register a

member

Refuse

member

<<

extend

>>

[invalid credit

card No]

Customer

Search for

product/service

Register a

member

Refuse

member

<<

extend

>>

[invalid credit

card No]

[image: image40.wmf]HH

staff

Course

registration

Room booking

Update

information

Schedule

course

<<include>>

<<include>>

Student

Update

facility’s

information

Update

customer’s

information

<<include>>

<<include>>

Receptionist

HH

staff

Course

registration

Room booking

Update

information

Schedule

course

<<include>>

<<include>>

Student

Update

facility’s

information

Update

customer’s

information

<<include>>

<<include>>

Receptionist

[image: image41.wmf]Update

information

Update

facility’s

information

Update customer’s

information

Update

information

Update

facility’s

information

Update customer’s

information

[image: image42.wmf]<<include>>

use case B

use case

A

<<i

nclude

>>

specifies that the source use case

(A)

explicitly incorporates the

behaviour

of the target

(B)

A

includes the behaviour of

B

[image: image43.wmf]<<e

xtend

>>

specifies that the target use case

(B)

extends the

behaviour

of the

source

(A)

A

is extended from

B

by adding

some actions

<<extends>>

Extension

points

use case

A

use case B

<<e

xtend

>>

specifies that the target use case

(B)

extends the

behaviour

of the

source

(A)

A

is extended from

B

by adding

some actions

<<extends>>

Extension

points

use case

A

use case B

[image: image44.wmf]Course

registration

Room booking

Schedule

course

<<include>>

<<include>>

Course

registration

Room booking

Schedule

course

<<include>>

<<include>>

[image: image45.wmf]Register a member

Extension point: invalid

credit card No

Refuse register

member

<<

extend

>>

Register a member

Extension point: invalid

credit card No

Refuse register

member

<<

extend

>>

[image: image46.wmf]Register a member

Extension point: invalid

credit card No

Refuse register

member

<<

extend

>>

Renew member

Extension point:

membership type

<<

extend

>>

Register a member

Extension point: invalid

credit card No

Refuse register

member

<<

extend

>>

Renew member

Extension point:

membership type

<<

extend

>>

[image: image47.wmf]<<executable>>

CourseScheduleEXE

<<executable>>

CourseScheduleEXE

[image: image48.wmf]«business»

::Customer

custID: int

name: String

address: String

create()

remove()

checkValidity()

updateDetails()

Figure 2.1 The Waterfall model of software development.

This model has the disadvantages of

· Lack of iteration (no development completes all the analysis before starting to design, then completes all design prior to programming and so on)

· Lack of responsiveness to change (it is difficult to update and/or improve the analysis in the light of business change once that phase has passed)

· Inability to deliver working systems incrementally in short timescales

The Waterfall model has also, somewhat unfairly, taken the blame for onerous developments of monolithic, over-documented, out-dated systems. This is more likely a result of how the method is used than the method itself. Methodologies that are based upon the Waterfall method include SSADM, PRINCE and MERISE.

2.1.2 Boehm's Spiral Development Method

Boehm's spiral approach (Boehm 1988) is perhaps the best known iterative approach to system development.
[image: image7.jpg]Spiral Model

Determine objectives,
aternatives, & constraints

Evaluate sier nalives,
denity & resolver isks

Devebp & werify

Plannet phase nest leve prodict

[RSyn LT ——— B

Figure 2.2 Boehm's Spiral Model of system development (Boehm 1988)
The model (shown in Figure 2.2) was developed in response to the availability of relatively cheap and ubiquitous PCs, which allow applications to be developed rapidly, and in close conjunction with the users of systems (or by the users themselves). This model seeks to address some of the major disadvantages of the Waterfall model by seeking to build systems little by little, first doing a little analysis, some prototyping, some design some coding and then repeating this cycle until the development is complete. In this way the end product can incorporate requirements that change during the development lifecycle - a major advantage when compared to the waterfall approach. The Rapid Application Development (RAD) approach to software development uses this model. The best known methodology in support of a RAD approach is the proprietary Dynamic System Design Method ®(DSDM) (www.dsdm.org) The main perceived disadvantage of adopting an iterative approach is that of managing intermediate deliverables in a project and thus knowing when a projector part of a project is complete.

2.1.3 Incremental Approaches

One method of avoiding large development timescales is to deliver a system one small piece at a time, delivering elements of the required functionality to the users, release by release, as part of a planned process. This is an incremental approach. Although not specifically excluded from the previous approaches, the technique is so powerful it deserves highlighting in its own right.

The advantage of an incremental approach is that deliverables are frequent and visible, allowing changes in business requirements and technology to be incorporated as they appear. Disadvantages include

· a significant development overhead (in developing temporary interfaces between incrementally released functionality and legacy systems during the development lifecycle)

· possible lack of management control as incremental releases encourage functionality creep (similar to the disadvantage inherent in an iterative approach)

2.2 The SWAT lifecycle

2.2.1 Introducing the SWAT Lifecycle

An approach is required that capitalizes on the rigor and manageability of the waterfall method, the responsiveness of an iterative approach and the speed of
[image: image8.wmf]Strategic

Feasibility

Evaluation

Requirements

Elicitation

System

Deployment

Component

Build and Test

System Design

System

Operation

System Analysis

Functional

Testing

Evaluation

Evaluation

Evaluation

Evaluation

Figure 2.3 The SWAT development lifecycle.
delivery of an incremental approach whilst avoiding the pitfalls of each. Such a method must also allow and incorporate the use of standard analysis and design tools. The SWAT approach, shown diagrammatically in Figure 2.3 seeks to achieve this.

The SWAT methodology follows a cyclical model, linking the classical development phases of Requirements Elicitation, System Analysis, System Design, Component Build and Test, Functional Testing, Deployment and System Operation.

Each of these phases may employ a number of techniques to achieve its objective (see Figure 2.4). A critical element of each phase is the evaluation of the outcomes (or options) of that phase against both the previous phase (introducing a strong element of iteration into the method) and also against the Strategic Feasibility of the possible options under consideration in the phase.

The method may be used not only for projects where many functional areas of a system are developed and implemented simultaneously but also for projects where functional areas are developed and implemented consecutively (an incremental approach). In both cases it is critically important that the overall scope of the development is defined in the initial requirements elicitation. The assumption is made that e-commerce systems will always be developed with an Internet architecture.

For functional areas that are being developed simultaneously, each functional area of the system would have parallel SWAT threads running simultaneously. Incrementally developed and implemented functional areas would be have consecutive SWAT cycles.

The following sections expand on each phase of the SWAT lifecycle.

2.2.2 Strategic Feasibility

Strategic Feasibility is considered as the most important element in the SWAT lifecycle. It focuses on a set of strategic factors that may determine how well companies can achieve competitive advantage by using e-commerce systems. Strategic Feasibility is the touchstone against which every stage of the SWAT lifecycle is checked before proceeding with subsequent phases. The strategic factors are grouped into the areas of:

· Business (nature, position in market, SWOT etc)

· Customers (who they are, what their requirements are etc)

· Products and Services (marketing, sales, operational aspects etc)

· Competition (nature, routes to competitive advantage etc)

· Marketing

Each of these areas is considered in more detail below.

2.2.2.1 Business

The organisation should be in a position to:

· state where the organisation is now (start-up, growth, stabilisation etc)

· understand the nature of business

· appraise of firm’s current business model

· determine the properties of business model that is going to be adopted

· define the firm’s strengths, weaknesses together with any business opportunities and threats?

· perform some cost-benefit analysis for the development of an e-commerce system (ROI)

When an organisation considers the development of an e-commerce system, it is necessary to analyse all properties in the business model with concerns related to the Internet based systems (see Table 2.1).

Table 2.1 Properties of a business model for e-commerce.

	Properties of Business Model
	Concerns specific to Internet Business Model

	Customer value
	Organisation's image and brand?

Timing: differentiate products by introducing them first

Low cost products and services (differentiation)

Accessibility (location)

Does the internet offer features of the products differently from its competitors?

Necessary services offered via the Internet?

	Pricing
	The right pricing strategy

	e-commerce activities
	Focus on the value added activities (as the result of BPR)

How e-commerce systems can improve upon existing activities

	Implementation
	Impact on strategy, structure, computer systems, people, and environment of the organisation by implementing an e-commerce system

	Capabilities
	Potential capability by Web site presence?

Impact on existing capabilities?

	Sustainability
	Is an e-commerce system in the organisation sustainable?

How can the organisation take advantage of it?

2.2.2.2 Customer

Enterprises must commit to a strategy that reduces the gap between their ability to deliver and the customer's ever-increasing expectations.

Can the organisation answer these questions?

· Are Sales, Marketing and Service integrated to seamlessly support customers' growing expectations?

· Is technology used to enhance the entire experience surrounding the product?

· Are customer acquisition, defection and retention metrics used to manage the organisation?

· How are customers enticed and retained?

· What is done to treat customers as individuals or is the business product-centric?

· Are profit analyses based exclusively on product performance?

· Is it possible to predict which prospects will evolve flourish into profitable customers?

· What is the margin impact of Net Markets and dynamic pricing?

· Who are the most profitable customers? Does a plan exist to strengthen those relationships?

Today's Internet economy forces organisations to continuously address Customers as one of their most important assets. No matter what the industry, product or service, an organization relies more on customers than on any other component of the business. So, what is being done to understand, manage, track, evaluate, forecast, service, support, and care for customers? Is know who the customers really are?

2.2.2.3 Products and services

The strategic goal for products and services must be to:

· to increase customer’s awareness of products and services (marketing)

· to improve sales

· to reduce operational costs

2.2.2.4 Competition

A strategic view of the organisations competition must consider:

· where the sources of competitive advantage can be gained?

· an appraisal of competitors’ business models

· how does the Internet impact the organisation and its market?

· What is the role of e-commerce role in adding value to the business

· using the 5 Cs to empower the company in the marketplace

· using the 5 Cs to add value for customers

· that B2C e-commerce will lead onto B2B

2.2.2.5 Marketing strategy

The marketing element of strategic feasibility must address:

· the focus of the organisation in the marketplace

· using e-commerce systems to differentiate your company

· economic, social, demographics and political forces

· opportunity and segmentation

Each of these factors must be considered when evaluating different approaches and options in each phase of the SWAT lifecycle.

2.2.3 Requirements Elicitation

Requirements elicitation seeks to define the requirements of a proposed system in terms of:

· Strategic Requirements (arising from the issues raised in the previous section)

· User requirements including:

· current system expectations

· new system (browser and server)

· functional requirements

· usability requirements

·
Non-functional requirements arising from

· strategic considerations

· technology issues

· non-stated User Requirements

The defined requirements are captured in a number of conceptual models to define the scope of the required system, arising from the factors above and

· background reading and brainstorming

· interviewing potential users and stakeholders

· observation

Once the functional requirements for the new system are identified, they need to be described in such a way that acts as a communication method for both users and developers of the system.

2.2.4 System Analysis

The role of Analysis is to confirm, extend and model the functional requirements of a system to define "What" the system should do. Two questions that are posed by new developers are “What is the difference between analysis and design?” and “Why are analysis and design treated as separate activities?” In the development of e-commerce systems, the process of analysis is distinguished from the process of design. This is because that analysis is aimed at “What?” a system is to do, and design seeks to describe the “How?”

2.2.5 System Design

The design of a system aims to convert the “What” into the “How”. Design can be carried out at two levels: logical design which addresses the aspects that affect the overall system, and physical design which addresses the specific implementation requirements. In the case of e-commerce systems these focus on delivering the required functionality in the light of browser, server and database issues.

A design of e-commerce systems takes place at three layers (or packages in UML terms):

· User interface – graphical user interface/Web pages

· Business objects (logic) – business classes represent system behaviour, business rules, data structure, and application logic

· Database – data persistency, interoperability (CORBA, ODBMS on server)
2.2.5.1 Design for the user interface layer

A design for the user interface is to create a “look and feel” through which users can request, search and browse information about products/services. Many web site design issues at the user interface layer concern mainly about usability, web management, and web content. Nielson (1999) discusses these issues with some good and bad experiences in the user interface design for web site development. From a functional point of view, a user interface should perform business logic defined and organised at the business objects layer. This enables the users to manipulate information according to their requirements.

2.2.5.2 Design for the business objects layer

The business objects layer is next to the user interface layer. The design of the business objects layer is the core of the system and governs the behaviour of the system both functionally and technically. It is noticeable that business classes do not contain operations for storing and retrieving objects. These operations belong to data storage class’ operations at Database Layer

2.2.5.3 Design for the database layer

A design for data storage has minimal impact on the design of other layers of the system. The data storage classes are decoupled from the business classes. This approach allows reusability for business classes as well as data storage classes. The business classes contain nothing that indicates how they are to be stored. The same business classes can be reused unchanged with different storage mechanisms, such as files, relational databases or object databases where business classes can be persisted and retrieved.

2.2.6 Component Build and Testing

This phase is where the design is converted into code and data storage and retrieval. It also covers the testing of the discreet objects/components that are created. There is no further detail offered on this phase of the SWAT lifecycle, as this is more than adequately covered in other materials.

The output of this phase is functioning, tested discrete objects/components.

2.2.7 Functional Testing

Although each component has been tested successfully, it does not guarantee that they work correctly together when they are integrated into a whole system or sub-system. This phase is the formal test phase of the development. It includes:

· integration testing (through interfaces)

· user acceptance testing (functionality and performance)

Functional testing includes testing of all elements of the system using defined test plans, incorporating test data, procedures to be followed and expected results. If a system is being developed incrementally it is important to differentiate between incremental testing (where only additional functionality is tested) and regression testing (where all delivered functionality is tested).

System defects are iterated back to the component build and test phase for rectification and subsequent re-testing

2.2.8 System Deployment

This phase covers the live implementation of the system including system configuration, data transfer and rollout. Any issues specific to the architecture of the live environment are addressed in this phase.

2.2.9 System Operation

This phase covers the day-to-day use of system. This is in effect a continuous validation of delivered functionality, performance and alignment with strategic feasibility but only when supported by monitoring procedures. The system must be evaluated against the organisation's strategic feasibility at regular intervals.

2.2.10 Evaluation

Evaluation is the comparison of phases of the system's development against the organisation's strategic feasibility. Each stage of the lifecycle will produce options for requirements, options of models of functionality (from analysis and design), options for implementation and options for deployment.

Each of these options should be measured for its short-, medium- and long-term impact on the business and its strategic direction. This evaluation requires a frank and open dialogue between the developers of the system and the relevant strategic stakeholders.

2.3 Techniques in the context of SWAT Framework

A number of recognised techniques may be used in the various phases of the SWAT lifecycle. Where which group of techniques technique fits is outlines in Figure 2.4 below.
[image: image49.wmf]«business»

::Customer

- custID: int

+ name: String

+ address: String

- create()

- remove()

+ checkValidity()

- updateDetails()

[image: image50.wmf]«business»

::Customer

- custID: int

+ name: String

+ address: String

- create()

- remove()

+ checkValidity()

- updateDetails()

«business»

::Customer

- custID: int

+ name: String

+ address: String

- create()

- remove()

+ checkValidity()

- updateDetails()

[image: image51.wmf]«business»

::Customer

custID: int

name: String

address: String

create()

remove()

+ checkValidity()

updateDetails()

+ getDetails()

«business»

::Member

- password: String=(10 char)

+ discountRate:int

- changePassword()

- updateDiscountRate()

+ checkPassword()

[image: image52.wmf]«business»

::Staff

- staffID: String

- name: String

+ e-mail: String

+ roomNo: String

+ telNo: String

- create()

- remove()

+ sendEmail()

- updateDetails()

+ getStaff()

«business»

::Student

- studentID: String

- name: String

- address: String

+ email: String

+ telNo: String

- creat()

- remove()

- updateDetails()

+ getStudent()

«business»

::Course

- courseCode: String

- courseTitel: String

- description: String=100 char

+ resourseRequirement: String

+ deliveryPattern: String

- courseMaterialStatus: Boolean

- create()

- remove()

- updateDetails()

+ getDetails()

- materialReady()

+ scheduleCourse()

«business»

::Course Schedule

+ courseCode: object

+ staffID: object

- venue: String

- studentLimit: int

+ timeSlots: list

+ create()

+ remove()

- updateDetails()

+ getTimeSlots()

+ getMaxStudentNo()

+ checkStartDate()

+ getVenue()

+assignStaff()

- setTimeVenue()

«business»

::Reservation

- reservationID: int

+ course: object

+ student: object

- reserStatus: Boolean

- create()

- remove()

+ contractStudent()

- updateStatus()

+ getStatus()

1

1

has a schedule

*

1

reserved by

*

*

register for

*

*

assigned to

[image: image53.wmf]«business»

::Course

- courseCode: String

- courseTitel: String

- description: String=100 char

+ resourseRequirement: String

+ deliveryPattern: String

- courseMaterialStatus: Boolean

- create()

- remove()

- updateDetails()

+ get Details()

- materialReady()

«business»

::Course Schedule

+ courseCode: object

+ staffID: object

- venue: String

- studentLimit: int

+ timeSlots: list

- create()

- remove()

- updateDetails()

+ getTimeSlots()

+ getMaxStudentNo()

+ checkStartDate()

+ getVenue()

1

1

has a schedule

«business»

::Course

- courseCode: String

- courseTitel: String

- description: String=100 char

+ resourseRequirement: String

+ deliveryPattern: String

- courseMaterialStatus: Boolean

- create()

- remove()

- updateDetails()

+ get Details()

- materialReady()

«business»

::Course Schedule

+ courseCode: object

+ staffID: object

- venue: String

- studentLimit: int

+ timeSlots: list

- create()

- remove()

- updateDetails()

+ getTimeSlots()

+ getMaxStudentNo()

+ checkStartDate()

+ getVenue()

1

1

has a schedule

[image: image54.wmf]«business»

::Catalogue

+ programme: String

+ regulation: String

+ certificate: String

+ createCourse()

+ removeCourse()

+ updateCourse()

+ getCourse()

+ getResourceRequirement()

+ checkDeliveryPattern()

+ checkCourseMaterialStatus()

«business»

::Course

- courseCode: String

- courseTitle: String

- description: String

+ resourceRequirement: String

+ deliveryPattern: String

- courseMaterialStatus: Boolean

*

1

[image: image55.wmf]«business»

::HomePage

«business»

::Frame

*

1

[image: image56.wmf]Use Case

Diagram

Static structure

class

object

Sequence

diagram

Collaboration

diagram

State Transition

diagram

Activity

diagram

Dynamic structure (interaction)

Construction

Component

diagram

Deployment

diagram

instance of

Use Case

Diagram

Static structure

class

object

Sequence

diagram

Collaboration

diagram

State Transition

diagram

Activity

diagram

Dynamic structure (interaction)

Construction

Component

diagram

Deployment

diagram

instance of

[image: image57.wmf]:

object2

object1:

class name

<<Actor>>

User

:

object3

0: event

1: operation

2: operation

3: operation

start time

end time

<

use case context>

:

object2

object1:

class name

<<Actor>>

User

:

object3

0: event

1: operation

2: operation

3: operation

start time

end time

<

use case context>

[image: image58.wmf]Message

type

Link

s

ymbol

Meaning

Synchronous or

call

Return

Asynchronous

•

The normal procedural or single

-

threaded

execution.

•

A procedural sequence can be nested

operation calls.

•

It waits for results.

Not a message, but a return from an earlier

message.

•

It can cause another object to start computing

without having to stop computing itself (sender

splits its single thread into two, hands one

over to receiver of its message).

•

Concurrency.

•

It does not wait for reply.

Message

type

Link

s

ymbol

Meaning

Synchronous or

call

Return

Asynchronous

•

The normal procedural or single

-

threaded

execution.

•

A procedural sequence can be nested

operation calls.

•

It waits for results.

Not a message, but a return from an earlier

message.

•

It can cause another object to start computing

without having to stop computing itself (sender

splits its single thread into two, hands one

over to receiver of its message).

•

Concurrency.

•

It does not wait for reply.

[image: image59.wmf]«business»

:Student

«business»

:Course

«business»

:Reservation

enter student details

0. register student

reserve the student for the course

1. contractStudent()

retrieve the course information

2. getDetails()

isRevered with the course

3. updateStatus()

confirm the reservation of the course

4. the course is reverved

<Course Registration>

[image: image9.wmf]Strategic

Feasibility

Evaluate

Evaluate

Evaluate

Evaluate

Evaluate

Requirements

Elicitation

System

Deployment

Component

Build and Test

System Design

System

Operation

System Analysis

Functional

Testing

[image: image60.wmf]«business»

:course

«business»

:courseSchedule

«business»

:staff

request a schedule for course

0. request a schedule

the selected course to be

scheduled

1. create() [:courseDetails]

find a suitable staff for the

course

2. getStaff()

assign staff to the course

3. assignStaff()

allocate time and venue

4. setTimeVenue()

schedule is completed

5. schedule done

Course Schedule

Figure2.4 Analysis and Design techniques in the SWAT Framework.
Each type of technique associated with each SWAT phase may comprise of several techniques. The following tables link each specific technique to the relevant SWAT phase and provide quick access a detailed description of each technique.

Requirements Elicitation

	Technique
	
	Remarks

	· Use case Diagrams
	Mandatory
	Outline level only

	· Softer Systems Methods
	
	

	· Brainstorming
	Optional
	

	· Root Definitions
	Optional
	

	· CATWOE
	Optional
	

	· Rich Pictures
	Optional
	

	· Storyboarding
	Optional
	

	· Prototyping
	Mandatory
	

	· Testing Techniques
	
	

	· Prototype Reviews
	Mandatory
	

	· Use Case Scenario Testing
	Mandatory
	

	· Performance Agreements
	Mandatory
	

System Analysis

	Technique
	
	Remarks

	· Use case Diagrams
	Mandatory
	Takes Requirements UCs as base

	· Use Case Scripts
	Mandatory
	Supplements UC

	· Class/Object Diagram
	Mandatory
	

	· Interaction Diagrams
	Mandatory
	

	· Sequence Diagrams
	Mandatory
	

	· Collaboration Diagrams
	Mandatory
	

	· State Diagrams
	Mandatory
	

	· Prototyping
	Mandatory
	

	· Testing Techniques
	
	

	· Prototype Reviews
	Mandatory
	

	· Use Case Scenario Testing
	Mandatory
	Of detailed Use Cases

	· Structured Walkthroughs
	Mandatory
	Tests models

System Design

	Technique
	
	Remarks

	· Class Diagram
	Mandatory
	Populated from analysis phase

	· Sequence Diagrams
	Mandatory
	Takes analysis phase as base

	· Component Diagram
	Mandatory
	

	· Packages
	Mandatory
	

	· Prototyping
	Optional
	Technical aspects and options

	· Testing Techniques
	Optional
	

	· Prototype Reviews
	Mandatory
	

	· Structured Walkthroughs
	Mandatory
	Tests models

Component Build and Test

This phase is not considered in this the Analysis and Design version of the methodology

Functional Testing

	Technique
	
	Remarks

	· Testing Techniques
	Mandatory
	

	· User Acceptance Testing
	Mandatory
	

System Deployment

This phase is not considered in this the Analysis and Design version of the methodology but perhaps it ought to be!!!!!!!!!!!!!

System Operation

	Technique
	
	Remarks

	· Post Implementation Monitoring
	Mandatory
	

Section 3 describes each of the techniques in detail.

3 SWAT techniques

The following section describes in detail the techniques that are incorporated into the SAWT method. The backbone of the method is the core techniques described in the UML. These are supplemented by a number of techniques commonly used in the system development process, either as part of another recognized approach or simply as pragmatic tools of the trade.

3.1 Use case modelling

The UML provides a set of modelling techniques for capturing the requirements at an abstract level. A use case specifies the behaviour of a system or a part of system what it should perform. It is also a description of a set of basic course of events, including actions, variants, and constraints which controls the system’s behaviour. The starting point is the Use Case diagram

3.1.1 Use case diagram

· Use Case Diagram is capable of modelling the requirements in a graphical form for the following reasons:

· The use case model is developed in co-operation with the business domain model.

· To decide and describe the functional requirements of the system, resulting in an agreement between user and the systems developers who are building the system.

· To give a clear and consistent description of what the new system should do, so that the model is used as the basis for the further design to deliver the functions.

· To provide the ability to trace functional requirements in classes which perform operations in the system.

· To simplify changes and extensions to the system, the use case model can be altered at the abstraction level, and then make subsequent alterations in classes and operations.

· To provide a basis to performing system tests that verify the system during the system building phase.

Use case modelling is therefore an important step in the system analysis and design that will decide the scope of the new system, in terms of what this system should do, but not how the system does. A use case diagram contains model elements of the system boundary, actors and use cases within the system boundary. An actor represents a role a user plays in the system. Some typical elements can be found in the use case diagram are system boundary, use cases, actors, and interactions. A system boundary in the use case model defines a scope of the system’s functionality, which describes a set of sequence of actions, including variants that the system performs to yield an observable value to an actor. It is impossible that one system can do everything. So there is always a limit for what a system should do.

With respect to the Web-based system for HotHouse (see case study in Appendix A), the use case ValidateMember can be described in the following ways:

· Main flow of events. The use case starts when the browser prompts the Customer for Login. The Customer enters his/hers username and password by press button Submit or Go. The system checks then the identity against the valid registration when the Customer was accepted and given the authorised ID. If the login is valid, the system permits the access. This use case has completed its operation.

· Exceptional flow of events. If the Customer enters an invalid identity, the use case restarts to prompt that it is invalid ID, and try again. If this event happens three times in a line, the system cancels the entire operation and even close up the login page.

There can be a number of exceptional flows of events based on the different scenarios with corresponding actions. A collection of the use cases in their flow of events and relationships can be modelled and visualised in a use case diagram.

Figure 3.1 shows an example use case diagram of the on-line registration system, which has been developed for the Hot House. This system involves different users (actors) and their associated tasks (use cases) performed within the system.

Actor

Users in the use case diagram are normally regarded as an actor who represents a role to be able to perform different subsets of the system functionality. It is sometimes uneasy to identify actors in the system. There are some tips for system developers to identify actors by asking the following questions:

· Who will use the main functionality of the system (primary actors)?

· Who will need support from the system to do their daily tasks?

· Who will need to maintain, administrate, and keep the system working (secondary actors)?

· Which hardware devices does the system need to handle?

· With which other systems does the system need to interact? This could be divided into other systems that initiate contact with this system. These other systems can include computer systems (e.g., payroll systems, inventory systems, even suppliers’ systems from outside firms) as well as applications (e.g., databases, software components/modules, and system interfaces) with which this system will operate.

· Who or that has an interest in the results (the value) that the system produces?

[image: image10]
The example given in Figure us-1, Customer and Student are the actors who request information on the products/services and courses that Hot House provides to train people with ceramic design. HHStaff and Receptionist are also the actors who use and maintain the on-line registration system at the back-office in the company. From this example, one can see that the actors can be categorised into two mainly types: primary actor and secondary actor. A primary actor is one that uses the system’s primary functions, such as Search for product/service, on-line Register as a member, and training Courses Registration. A secondary actor is one who is responsible for maintaining and upgrading the system. For example, HHStaff update information on the home pages, process customers’ membership and course registrations. Both types of actors are modelled to ensure that the entire functionality of the system is captured and described, even though the primary functions are of most interest to Customer and Student.

One should remember when looking for the users of the system, don’t consider only individuals who sit in front of screen. The user can be anyone, e.g., human users, or anything, e.g., other systems, subsystems, packages, interfaces, that directly or indirectly interacts with the system and uses the services of the system.

3.1.2 Identifying use cases

[image: image11]When one starts to put the requirements into a use case diagram, there are always questions like how do I know what actors and use cases should be included in the diagram? How do I know that actors are correctly linked with use cases? How can I make sure that I have defined the right use cases?

[image: image61.wmf]<<Actor>>

User

:

Object1

0

:

event

1

a:

operation

:

object2

2

:

operation

:

object

4

3

:

operation

4

:

event

Composite Object

:

object

5

:

object

6

5

:

operation

:

object3

1

b:

operation

<<Actor>>

User

:

Object1

0

:

event

1

a:

operation

:

object2

2

:

operation

:

object

4

3

:

operation

4

:

event

Composite Object

:

object

5

:

object

6

5

:

operation

:

object3

1

b:

operation

Before these questions are answer, it is important to understand what a use case is and how it is defined. A use case represents a complete functionality as perceived by an actor. For example, as shown in Figure 3.2, when a customer of Hot House accesses to the on-line registration system, he/she is engaged with functions of Search for the products and services as well as may wish to Register as a member of Hot House.

There is situation where more than one actor is interacted with Course Registration use case but performs different sequence of actions in it, e.g., Student can register with the courses for ceramic design (see Figure 3.3). They provide their personal details and the chosen course for enrolment. When they are accepted on the course, they can book a room during the course, which can be done on-line via the system. HHStaff initiate also Course Registration use case for a purpose that they process all the received applications, confirm the students with acceptance for the course, and plan the resource for the course, e.g., schedule times, venue, and materials needed. The actor of Receptionist use this system for coordinating their resource and booking via one single point of Room Booking use case.
3.1.3 Common Mistakes

[image: image12]
In many cases, one actor is involved in many use cases. In Figure 3.1, HHStaff have the responsibility to Update Information, including facility’s information and customer’s information, except they process Course Registration (see Figure 3.4).

It is relatively easy to identify actors in the system. When the system developers try to identify use cases, they sometimes make mistakes to consider a single action as a use case. Some typical examples are Add new customers, Delete courses, and Print confirmations. These actions can be found within the use cases in Figure 3.1. This kind of actions is considered at detailed operation level within a sequence of action, not at conceptual level, which use case diagram defines itself. To avoid mistakes like this, the system developers should focus on looking at a use case as a scenario within which a series action is formed to perform functions.

3.1.4 Relationships between use cases and actors

UML provides various types of relationship between use cases, as well as between use cases and actors. There are categorised into:

· Association. An association is a structural relationship that specifies that actors are connected to use cases. In another word, actors initiate use cases in the system.

· Generalisation. A generalisation relationship in use case diagram is defined as the same as in class diagram. Generalisation between actors or use cases is presented as a line with a hollow triangle at the end of the more general role.

· Include. Include relationship specifies a source use case explicitly incorporates the behaviour of target use case linked with the source use case. A notation is presented as a dashed line with a direction arrow close to the target use case along with <<include>>.

· Extend. Extend relationship specifies that a target use case extends the behaviour of the source use case. . A notation is presented as a dashed line with a direction arrow close to the source use case along with <<extend>>.

A typical relationship between use cases and actors is association, which is represented as a line without arrows (cf Figure 3.1). If Customer is associated with Search for product/service that means that this actor initiates interaction with the system to find out what products and services Hot House offers. If they are interested in the offers, they may wish to register themselves as a member and receive further interesting information.

In UML modelling, a generalisation relationship in use case diagrams is often assigned to both among actors (see Figure 3.5). A Customer can be decomposed into two types: PublicCustomer and RegisteredCustomer at a sub-use case level. A relationship between Customer and PublicCustomer and RegisteredCustomer is defined as generalisation. This means that PublicCustomer and RegisteredCustomer inherit the behaviour of the super use case of Customer.

[image: image13]
A generalisation relationship can also be applied among use cases (see Figure 3.6). In this example, Update Information is considered as a general use case, which describes the general sequence of action on maintaining information in the system. Update Facility’s Information and Update Customer’s Information are the specific use cases on updating specific type of information that requires specific sequence of action. These two decomposed use cases from Update Information are linked with the generalisation relationship.

[image: image62.wmf]Student: John

Smith

«business»

:Student

«business»

:Reservation

«business»

:Course

0: register student

1:

contractStudent

()

2:

getDetails

()

3:

updateStatus

()

4: The course is

reserved

Course Registration

Student: John

Smith

«business»

:Student

«business»

:Reservation

«business»

:Course

0: register student

1:

contractStudent

()

2:

getDetails

()

3:

updateStatus

()

4: The course is

reserved

Course Registration

[image: image63.wmf]customer

customer

Company

Enterprise applications

[image: image14]Include and extend are defined in UML as stereotype relationships for describing subset of use cases how they are located in a flow of events in which a base use case includes the behaviour of other use cases or a base use case is extended from using behaviour of other use cases. A definition and notation for <<include>> and <<extend>> is presented in Figure 3.7 and Figure 3.8, respectively.

<<include>> and <<extend>> are useful relationships when there is a need to take out the common behaviour of different use cases and define it as a separate use case in either <<include>> or <<extend>> relation with the base use cases. This separated use case can be shared and reused, or considered as special use cases. In the use case diagram for the on-line registration system, these two types of relationship have been applied (see Figure 3.9 and Figure 3.10).

[image: image15]In Figure in-1, Course Registration is the base use case. It performs tasks of registering students on courses. It is considered that the process of course registration includes room booking and course schedules. In this case, it is not a good idea to define one use case, which includes all three scenarios, because room booking and course schedules are also independent use case in different circumstances. It is better to keep them separate from Course Registration. In this way, Room Booking and Schedule Course use case could be reused by other use case as appropriate.

On the other hand, <<extend>> relationship represents that a base use case behaviour can be extended by other use cases depending on circumstances. The example in Figure ex-1 illustrates a <<extend>> relationship between Register a member and Refuse register member.

[image: image16]
A customer wishes to register with Hot House via the on-line registration system. In a normal situation, if all personal details are provided all right, including a correct credit card number. This member can then be registered. Sometime, the customer may make mistake on entering the number. Therefore, there is a need to check it out before issuing the registration. This is what Refuse register member takes place to check invalid credit card number at the extension point in Register a member. A validation of the credit card holder is performed in Refuse register member and the result could be valid or invalid. If it is an invalid cardholder, the system will then refuse to register this member until the right information of the card is provided within a limited attempts. Otherwise this member is registered successfully.

The use case of Refuse register member may perform differently when it is related with different base use cases. The behaviour of Refuse register member is dependent on to what extent other use cases requires it. For example, a Renew membership use case requires check validity of the member performed by Refuse register member (see Figure 3.11). In this situation, the checkpoint in Renew membership may not be credit card number, but the type of membership. For example, when this member is no long entitled as under age 18. This is because the membership fee is different between under and above age 18.

[image: image17]
3.1.5 Use cases realisation

The use of the use case diagram is to guide further development of the Web-based system. One way in which a realisation of the use case is to describe a collection of interacting objects which will support the functionality required by the use case (see Figure 3.12). This collective description can be produced by using the other UML techniques, such as:

· class diagrams

· interaction diagrams, including sequence and collaboration diagrams

· state transition diagrams

[image: image64.wmf]Company A

Enterprise applications

Supplier

Enterprise applications

Partner

Enterprise applications

network

Data/documents

Company A

Enterprise applications

Supplier

Enterprise applications

Partner

Enterprise applications

network

Data/documents

to move from the abstract external description of the system’s functionality to a more detailed design of its internal structure.

In the SWAT lifecycle, for each of iteration, use cases drive through the whole development workflow and bind together the different stages. These use cases provide the most important input for finding and specifying classes, subsystems, interfaces and test cases, and for planning system integrations. Class diagrams are the main architectural diagrams, which are used to represent the results of systems analysis and design. But classes can only describe the static aspect of the system, e.g., their attributes, operations, and relationships between classes. Interaction diagrams will then be used to model the dynamic features of how objects interact with each other within the scope of the use case, e.g., ValidateMember, for what objects are involved in interaction.

It is often the case that the object’s behaviour during the interaction with others can be visualised in a sequence diagram where the events, subsequent actions and conditions may affect the status of the object. These events are normally from the same use case. There is a situation where events from different use cases try to change the status of the object. To model this kind of behaviour, sequence diagrams are an inadequate technique to choose. State transition diagrams are thus used to serve the purpose. Once the design of the system at conceptual level, plus the static and dynamic structure is completed, the next step is to move to construction during which the system interface and components/modules are deployed and configured. More detailed explanation on component diagrams and deployment diagrams can be found from the UML book series.

3.2 Class and Object Diagrams

The previous SWAT phase of Requirements Elicitation has produced the use case diagram, but it does not capture enough detail to show all inter-relationships among requirements, nor does it show enough of the structure of the problem situation for us to understand what is really happening. Therefore, class diagrams and interaction diagrams are introduced for detailing the requirements from the abstract understanding of the company’s situation to concrete and realisable models.

[image: image18.wmf]Name

attribute 1: data type

attribute 2: data type

operation_1()

operation_2()

operation_3()

Name

attribute 1: data type

attribute 2: data type

operation_1()

operation_2()

operation_3()

Figure 3.13 A class.

In the UML term, class diagrams present a static view of the system, on the other hand, interaction diagrams visualise this static view in a dynamic manner. With state transition diagrams together, internal and external events that affect behaviour and status of objects involved in the different use cases in the entire system can be modelled with a control.

3.2.1 Static modelling – class diagrams

A class diagram describes the static view of the system in terms of classes and relationships among the classes. This kind of model is similar to the structured data model, but the distinctive difference is that classes not only encapsulate structure of information, as well as behaviour (operations). A class in a class diagram can be directly implemented in an object-oriented programming language, e.g., Java, C++, and Smalltalk that has direct support for the class construction. The following sections will describe the concept and principle of class and relationships between classes.

3.2.2 Class

To create a class diagram, the classes have be firstly identified and described. A class is normally drawn with a rectangle, divided into three compartments: name, attributes, and operations, as shown in Figure 3.13.

3.2.3 How to find classes?

A recommended way for finding classes is noun identification technique. Read into the requirements specification or the business analysis of the system. Then pick all the nouns and noun phrases out of a requirements specification of the system, discard candidates which are inappropriate for any reasons, such as:

· redundant: the same class is given more than one name,

· vague: cannot tell unambiguously what is meant by a noun,

· an event or an operation: where noun refers to something which is done to or by the system,

· an attribute: where the noun refers to something simple with no interesting behaviour,

· meta-language: where the noun forms part of the way we define things (e.g., requirements, system),

· outside the scope of the system: where the noun is relevant to describing how the system works but does not refer to something inside the system.
Some examples that are not classes are typically like customerName, unitPrice, and deliveryDate. These may be the attributes of the classes. Things like create, getAccount, and updateDetails. These may be the operations of the class. A good example of class is shown in Figure 3.14. A notation of class has three compartments which are corresponding to name, attribute and operation.

[image: image65.wmf]Enterprise applications

Company

Enterprise applications

Company

3.2.4 Class attributes

A class has attributes that describe the characteristics of the objects. In Figure cl-2, custId, name and address are the attributes. These are the properties that Customer class possess.

3.2.5 Features of class attributes

An attribute of class has some features for how it is defined. The mostly used ones are:

· attribute type

· visibility

· attribute scope

An attribute must have a type, which indicates what kind of attribute it is. Typical attribute types are integer, string, Boolean, float, point, areas, and enumeration and they can be determined by a certain programming language.

Visibility describes whether the attribute is visible to other classes, subclasses or the class itself. There are three different visibilities to define attributes: private, public, and protected.

· Private. Only the class itself can use the features (attributes and operations). It is represented by symbol -.
· [image: image66.wmf]customer

customer

Company A

Enterprise applications

Supplier

Enterprise applications

network

Data/documents

Staff

customer

customer

Company A

Enterprise applications

Supplier

Enterprise applications

network

Data/documents

Staff

Public. The feature (attributes and operations) in the class can be used by the associated class or package. It is represented by symbol +.
· Protected. Only subclasses of the class can use the features (attributes and operations). It is represented by symbol #.
If a visibility is assigned to the Customer class, the class looks then like in Figure 3.15.

Attribute scope can be found useful in classes that a feature (attribute or operation) can be specified as it appears in each instance of the class or just a single instance of the feature for all instances of the class. UML defines two types of attribute with its scope: class scope and instance scope.

Class scope. There is one value of the feature for all instances of the class. It is indicated with an underline. Instance scope. Each instance of the class holds its own value for the feature. Most features of the class are instance scoped e.g., name, and address. A common use of class scoped feature is for private attributes that must be shared among a set of instances, e.g., custID is generated among all objects of this class, as it is shown in Figure 3.16.

[image: image19]
A formal syntax for defining an attribute is:

[visibility] name [multiplicity] [:type] [= initial-value] [{property-string}]

where

attribute declarations:

discountRate

name only

+ discountRate

visibility and name

discountRate : int

name and type

Items : list

name and complex type

name [0..6] : String

name, multiplicity, type

discountRate : Value = 1
name, type, initial value

ID : String {addOnly}

name, type, property

The name and type are mandatory, all other elements are optional.

3.2.6 Class operations

Operations, interchangeably called functions, are used to manipulate the attributes or to perform other actions. In structural methods, operations are scattered in the system and called from wherever the data is required. But in OO design, they are encapsulated inside a class and can be applied only to objects of that class. Some example operations are placed in the bottom compartment in the class Customer in Figure 3.16.

The common features of operations in a class are similar to attributes in the class. The operation can be class scoped or instance scoped, as well as visibility on private, public or protected. It is in the same principle, most operations of the class are instance scoped e.g., checkValidity() and updateDetails() (see Figure cl-4). A common use of class scoped feature is for private operation that must be shared among a set of instances, e.g., the operations create() and remove() are defined to carry out generic operations without having an object of the class, but they are restricted to access only the class scope attribute of custID.
A formal syntax for declaration of an operation is:

[visibility] name [(parameter-list)] [: return-type] [{property-string}]
where

display

name only

+ display

visibility and name

setDetails (n : Name, s : String)

name and parameters

getcustID () : int

name, return type

restart () {isQuery}

name and property

3.2.7 Relationships between classes

UML provides three important types of relationship for linking classes:

· Generalisation

· Association

· Aggregation

3.2.7.1 Generalisation

[image: image67.wmf]Available

do : checkCourseDate

do : checkStudentLimit

entry : staffAssigned

do : checkCourseDate

do : checkStudentLimit

Course Cancelled

Running

Over Subscribed

Completed

Create

Assign resource (staff)

[checkStartDate = True && currentStudent < minimumStudent]

[currentStudent > studentLimit]

[Date > endDate]

[startDate &&

currentStudent > minimumStudent]

A generalisation is a relationship between a general thing, called the super -class or parent, and a more specific kind of thing, called the sub-class or child (Booch et al., 2000, p. 141). The sub-classes inherit all the features (attributes and operations) from the super-class. For example, Figure 3.17 shows two classes which are related with generalisation. The class Customer is considered as the super-class which captures the common features. The class Member is the sub-class, which consists of its own features except the common features, e.g., password is only issued when a customer becomes a member. Only the member has the privilege to enjoy the discount. But all the attributes and operations in the super-class Customer are also the general features of Member. Therefore, the general features are encapsulated in Customer.

Visibility of the features in the super-class is normally protected that allows the sub-class to inherit them (cf Figure 3.17). But this is not restricted that these features must be protected for accessibility of its sub-classes. If these features are also visible to other classes or sub-systems, they must be public but never private.

3.2.7.2 Association

An association is a structural relationship, which specifies that objects of one thing are connected to objects of another. For example, a Student class might have a one-to-many association to a Course class that indicates that each Course instance is registered by one Student instance (see Figure 3.18).

[image: image20]
A normal association is rendered graphically as a solid line between classes. In the example class diagram, Course instance has a Course Schedule instance associated with. This association has a name, which is defined as adornment in UML, near the line representing the meaning (semantic) of the association. A name of association is often described by a verb, but nouns are sometimes also used. In modelling class diagram, it is possible to use navigable associations by adding a filled arrow with the name of association, see Figure 3.19. The arrow has placed near by the name of has a schedule, and it points to Course Schedule. This means that has a schedule association is navigated to the direction from Course to Course
[image: image21]Schedule.

In Figure as-2, there is two number “1” near to Course and Course Schedule. This number is defined as “multiplicity” in UML. The multiplicity is used to express how many objects are associated with each other from these classes. The range of multiplicity can be

· zero-to-one (0..1);

· zero-to-many (0..*, or * only);

· one-to-many (1..*);

· two-to-ten (2..10);

· series number (2, 5, 6, 8, 9, 20)

· etc…

If there is no multiplicity specified, it is then one (1) by default. It is important that when a multiplicity is applied, it should reflect the real world situation, not by imagination.

Multiplicity applies to attributes as well, see the syntax of an attribute in the previous section. The multiplicity of an attribute is specified in an expression in brackets after the attribute name. For example, the attribute studentLimit: int can be specified as studentLimit [1..20]: int which means that 1 or max. 20 objects in the Course Schedule class will be included in the course with the timetable.

3.2.7.3 Aggregation

Aggregation is a special kind of association representing a structural relationship between a whole and its parts. It can be implemented in the same way as an association

There are two kinds of aggregation: shared aggregation and composition aggregation. In a shared aggregation the parts may be parts in any whole that is a special case of a normal aggregation. For example, Catalogue is the whole that consists of a number of Course as parts (see Figure 3.20). A shared aggregation is rendered as a non-filled diamond placed at the end of association line close to the whole.

[image: image22]In modelling aggregation in the class diagram, Course class encapsulates its own attributes, e.g., the information about the course description and requirements. Due to Course are the parts of a Catalogue, therefore, all the operations for the manipulation on Course are encapsulated in the whole class of Catalogue. A question may rise on where the operations for the Catalogue class are captured. The answer is that the operations for manipulating programme, regulation, and certificate have to be specified when a case tool is used to generate class templates. At this analysis stage, these operations are not necessarily being shown explicitly, otherwise Catalogue would look rather large class with too many operations in.
A composition aggregation imposes some further restrictions between the whole and parts. It means that there is a strong ownership - the whole owns the parts, the part lives inside the whole. Furthermore, a multiplicity on whole-side for the composition aggregation must be zero or one (0..1), but the multiplicity on the part-side may be any range. If the whole object is copied or deleted, its parts are copied or deleted with it. Composition aggregation is rendered as a filled diamond placed at the end of association line close to the whole.

[image: image23]An example of composition aggregation is shown in Figure 3.21. In design a Web-based system, a screen is often divided into a number of panes for display information in different category. These panes can be specified as Frame. A Frame belongs to exactly one HomePage. When a Frame is created in a HomePage, it must be attached to enclosing that page. Similarly, when the page is destroyed, the HomePage object must be in turn destroy all the Frame parts in it.

3.2.8 Dynamic modelling – interaction diagrams

Two most important techniques in UML have been introduced and described that are use case diagrams and class diagrams. The use case models describe the functionality, which the system must help to perform. The class models describe the classes, which are intended to achieve this functionality and the relationship between them. Although operations of classes can be identified according to the intended behaviour of the system, but they can only be presented statically in the class diagram. What the class diagram is missing from the whole design point of view is that it does not show how objects communicate with each other from the connected classes. What message/value an object passes onto another object and what output they produce is the dynamic aspect of the system. Modelling the communication is beyond the capacity of the class diagram. Therefore, UML introduces interaction diagrams, including sequence diagrams and collaboration diagrams.

A main purpose that interaction diagrams serve is to model how a set of objects communicate and collaborate among them in order to generate some function. In the interaction, it involves a number of objects from the interrelated classes across the different use cases. This has been explained in Figure usr-1. This section will describe how communications and collaborations can be modelled in interaction diagrams.

3.3 Interaction Diagrams

Two most important techniques in UML have been introduced and described that are use case diagrams and class diagrams. The use case models describe the functionality, which the system must help to perform. The class models describe the classes, which are intended to achieve this functionality and the relationship between them. Although operations of classes can be identified according to the intended behaviour of the system, but they can only be presented statically in the class diagram. What the class diagram is missing from the whole design point of view is that it does not show how objects communicate with each other from the connected classes. What message/value an object passes onto another object and what output they produce is the dynamic aspect of the system. Modelling the communication is beyond the capacity of the class diagram. Therefore, UML introduces interaction diagrams, including sequence diagrams and collaboration diagrams.

A main purpose that interaction diagrams serve is to model how a set of objects communicate and collaborate among them in order to generate some function. In the interaction, it involves a number of objects from the interrelated classes across the different use cases. This has been explained in Figure usr-1. This section will describe how communications and collaborations can be modelled in interaction diagrams.

3.3.1 Sequence diagrams

A sequence diagram can be used to model interaction between objects through showing the time ordering of message. Figure 3.22 shows some common terms used in a sequence diagram:

· Use case context. A single use case, e.g., Course Registration, within which the interaction between the objects is modelled.

· Objects. The objects perform functions within the use case by sending, receiving and processing messages. They are rendered as :object and all aligned at the top of the diagram.

·
[image: image24]Lifelines. Each object has a lifeline – vertical dashed line under the object, which represents the existence of the object over a period of time. Most objects will be in existence for the duration of the interaction. Their lifelines start with the receipt of the event, e.g., request a course, until the interaction ends with a result that the student has been registered with the course.

· Focus of control. During the interaction within the lifeline, the object may sometimes perform an action for just the period of time. The other objects may take over the interactions for the action among them. In this case, a focus of control can be used to indicate starting and finishing this action within the object lifeline. The focus of control is presented as a tall thin rectangle bar.

· Message. There are two kinds of message participating the interaction: events and operations. An event massage normally triggers the interaction by requesting for some output from the system. An operation message is an object operation, which manipulates the attributes to produce the output.

· Links. There are major three types of link corresponding to the message type in sequence diagrams. The description can be found in Figure 3.23.

·
[image: image25]Pre-condition and post-condition. If there is a need to specify the flow of control more formally, attach pre- and post-conditions to each message. A condition is expressed as [consitionX], e.g., [studentNo <= studentLimit].
A design of sequence diagram should focus on identifying the objects and their interactions within a single use case context. In order to illustrate the interaction modelling with sequence diagram, two use cases on Course Registration and Room Booking (cf Figure 3.1) are selected to show how the dynamic aspect of On-line Registration System of Hot House is modelled.

Course Registration involves the object of :student, :reservation and :course (see Figure 3.24). These three objects together perform the function for registering the student on the course. The interaction among the object starts up with the event register student, and ends with the confirmation of the course is revered. For easy reading the flow of messages, the messages are sequenced with order. For example, register student is the trigger of the whole interaction, so it is numbered with 0. Once :student has received this message, it calls the operation contractStudent() in :reservation. During the preparation of the reservation of the requested course, the object :reservation requires the course details, it then calls the operation of getDetails() in :course to retrieve the course information. After the course details returned back to the object of :reservation, a self-delegation call, updateStatus(), within this object is carried out to link the course details with the variable of course: object and set the value of reserstatus: Boolean to TRUE. Up to this stage, the student has been successfully registered with the course. The system sends a return message to inform the student.

[image: image26]

[image: image27]Following the same principle as explained for Figure se-2, the sequence diagram for Course Schedule is produced, see Figure 3.25. The objects involved in this use case are :course, :courseSchedule, and :staff. When the course has got enough students on, the system triggers the event: request a schedule to start

the course scheduling. The object of :course calls the constructor of :courseSchedule to create the new course schedule object via create(). The resource required by the course are allocated by assigning the suitable staff, time slots and venue. When the schedule is successfully done, the system prompts a message for the confirmation.

3.3.2 Collaboration diagrams

A collaboration diagram, on the other hand, can be used to model interaction between objects through showing the structural organisation of the objects. Message passing between the objects is visualised in the use case context that differs from time ordering messages in sequence diagrams. A general view of collaboration diagram is shown in Figure 3.26.

[image: image28]
It can be seen that some terms in this figure are the same as in sequence diagrams, such as, objects, messages and links. The objects involved in a use case context are chosen and linked with messages. A message can be an event or an operation in the object. In collaboration diagram messages can be sent parallel that is described by using letters in the sequence number expression. For example, the message with label 1a. operation is sent to :object2, and the message 1b. operation is sent to :object4 in parallel with 1a. Collaboration diagrams do not model time orders but rather in a spatial form. There are some tips provided by Booch et al. (2000) for modelling a collaboration diagram:

· Set the context for the interaction among a system, subsystem, operation, class, or a use case.
· Set the stage for the interaction by identifying which objects play a role in the interaction, lay them out on the collaboration diagram as vertices in a graph, placing the more import objects in the centre, and their neighboring objects to the outside. Set the initial properties for each object, such as attribute value, tagged value, or state.

· Specify the links among the objects along with which message may pass, and lay out the association links.

· Start with the message that initiates this interaction, attach each subsequent message to the link (setting its sequence number as appropriate).
· If there is a need to specify the flow of control more formally, attach pre- and post-conditions to each message.

[image: image29]
Following these principles, the interaction between the objects involved in Course Registration is modelled in Figure 3.27.

In this example, a student, John Smith, requests a registration on the course through the event of register student. The object of :Student sends the message of contractStudent() to the object of :Reservation for a further process. When :Reservation receives the message, it requires the course details which John is requesting for the registration by sending getDetails() of the course from the object of :Course. Once the course details has been obtained, the object of :Reservation sets then the variable reserStatus : Boolean in to the value of TRUE. A least step in this whole interaction is to confirm to John that he has been successfully registered with the course.

An interaction model in collaboration manner for the use case of Course Schedule can be done in the same way as for Course Registration.

Some hints and tips provided by Booch et al. (2000) for drawing an interaction diagram can be summarised as follows:

· To focus on a single use case in which the objects are interacted.

· To use a sequence diagram if one want to emphasise the time ordering of message, whiles to use collaboration diagram if one wants to emphasis the organisation of the objects involved in the interaction

· To lay out its elements to minimise lines that cross.

· To use notes and colour as visual cues to draw attention to important features of diagrams.

· To use branching sparingly for representing complex branching much better using activity diagrams.

Following these principles, the interaction between the objects involved in Course Registration is modelled in Figure 3.28.

[image: image30]
In this example, a student, John Smith, requests a registration on the course through the event of register student. The object of :Student sends the message of contractStudent() to the object of :Reservation for a further process. When :Reservation receives the message, it requires the course details which John is requesting for the registration by sending getDetails() of the course from the object of :Course. Once the course details has been obtained, the object of :Reservation sets then the variable reserStatus : Boolean in to the value of TRUE. A least step in this whole interaction is to confirm to John that he has been successfully registered with the course.

An interaction model in collaboration manner for the use case of Course Schedule can be done in the same way as for Course Registration.

Some hints and tips provided by Booch et al. (2000) for drawing an interaction diagram can be summarised as follows:

· To focus on a single use case in which the objects are interacted.

· To use a sequence diagram if one want to emphasise the time ordering of message, whiles to use collaboration diagram if one wants to emphasis the organisation of the objects involved in the interaction

· To lay out its elements to minimise lines that cross.

· To use notes and colour as visual cues to draw attention to important features of diagrams.

· To use branching sparingly for representing complex branching much better using activity diagrams.

In summary of design with UML, so far the conceptual, static and dynamic view of the system has described together with the techniques. Using use case diagrams to describe the requirements of a system, using class diagrams to model the static structure of a system, including what classes there are and what messages objects of those classes accept; using interaction diagrams to visualise communications among objects involved in performing tasks defined in the use case diagram and subsequently the functions defined in the class diagram.

3.4 State Transition and Activity Diagrams

There is another interesting aspect in design of the system that is how an object reacts to receiving messages from many different use cases and changes its value over time. This kind of behaviour cannot be modelled by interaction diagrams, which involve more than one object. UML provides a technique, State Transition Diagram, to serve this purpose.

3.4.1 Modelling state of an object

All objects have a state at the time. An individual object may receive one or more messages in a particular order that changes its value over time. These messages can be different from case to case. This requires the object to be capable of responding differently to the same stimulus at different times. For example, consider the behaviour of a book in Library. An object of book can hold different status which depends on the messages from the use case of borrow a book, return a book, or reserve a book. For example, an event of borrow can invoke an action to change the state of the object of book to on loan. Return a book can send a message to the object of book, and its state will be at this time change into in library. The object of book may receive a message sent from reserve a book. The state of the object at this time will be changed into on hold. This example tells us that the object may change its state by receiving different messages, which in turn change its value according. Modelling the state of the object requires a technique that is state diagram.

3.4.2 State diagram

A state diagram is normally used to visualise the potential state of the objects and the transitions among those states. A logical state diagram can be considered as a well-structured algorithm, which consists of the elements of states, transitions, events and actions. These elements create a notation, which shows the behaviour of an object in a way of reacting to the different situations in the system.

3.4.2.1 States

A state is a condition or situation during the life of an object within which it performs some actions or waits for some events for satisfying some conditions. It has a name, state variable, which holds the value of the state, and actions, which execute the state. A notation of a state is illustrated in Figure 3.29. The execution of the state is triggered by an incoming event, and it causes some subsequent states through an outgoing event. Events come and go with transitions as they are indicated by arrow lines.

[image: image31]
3.4.2.2 Action
Figure 3.29 shows actions in the third compartment of a state. An action in the state is defined as an executable atomic computation that includes operation calls, a creation or destruction of another object, or sending of a signal to an object. There are three major types of action defined in UML: entry, exit, and do. Entry actions are any action that is marked as linked to the entry action and it is executed whenever the given state is entered via a transition. Exit actions are any action that is marked as linked to the exit action and it is executed whenever the state is left via a transition. Theses two types of action are associated with transitions and during which it is not interruptible. Do is a kind of action, which differs from entry and exit. When an object is in a state, it is normally in an idle situation and waiting for an event to occur. For example, if an object is in the Login state for validateMember, it may then wait for getUsername and getPassword as long as they are in that state. In this case, do is used to specify the activities involved inside the state. Do is considered as activities associated with transitions and during which it may be interrupted by some events. An example of these actions is given in Figure 3.30. As soon as the event of login enters the state, the action of validatTime is invoked to control the duration of stay on time. If the member is not doing anything within the set duration time, the login will become invalid. The do actions of getUsername and getPassword will take place during the Login state to verify if the member is valid. In this example, one can see that there is the incoming event of login and the outgoing event of time out. These are the triggers to change the value of the state.

[image: image32]
3.4.2.3 Event

An event is something that happens and that may cause some actions. It is therefore a trigger that activates state transition and it is processed one at time. There are three common events in state transition modelling.

· external event -- known as a system event, caused by something (e.g., actor) outside the system boundary.

· internal event -- caused by something inside the system boundary when an operation is invoked via message that was sent from another internal object.

· temporal event -- caused by the occurrence of a specific date and time or passage of time.

3.4.2.4 Transition
“A transition is a relationship between two states indicating that an object in the first state will perform certain actions and enter the second state when specified event occurs and specified conditions are satisfied” (Booch et al., 2000). This means that a state transition is composed with the following parts:

· source state - initiate an transition which trigger an event

· target state - the state that is active after the completion of the transition

· event trigger - the event whose reception by the object in the source state makes the transition eligible to fire, providing its guard condition is satisfied

· guard condition - a Boolean expression. True, the transition is eligible to fire; False, do not fire

· action – the executable atomic computation that directly act on the object that in turn change the value of the state.

A notation of transition is rendered as an arrow line directed from the source to the target state. An example of state transition model is shown in Figure 3.31.

[image: image33]
The object of Course Schedule has the states of Available, Course Cancelled, Over Subscribed and Running. This state transition starts with the event of Assign resource (staff). When this event occurs, the object status becomes Available. This status changes over time when there are different events occur, e.g., an internal event of currentStudent number is greater than studentLimit, then the status will become Over Subscribed. On other hand if the time slots for the course have been allocated but the currentStudent number is under minimum, the object status changes to Course Cancelled. The course is running when the resources are allocated and number of students is acceptable by the course. The lifetime of this object of Course Schedule is ended when the course is finished.

3.5 Prototyping and JAD/RAD techniques

3.5.1 Prototyping Generally

A prototype is an initial version of some or more of an intended system. This is developed, usually extremely rapidly to enable users, sponsors, stakeholders and developers can swiftly see what is intended or a particular way of achieving some technical or interface aspect can be explored. In an environment where users find difficulty in expressing requirements in a way that developers can understand, prototyping is a technique that can reduce ambiguity and establish a common dialogue.

Developing a prototype usually leads to improvements in the specification of the system and once it is available it can be used to sensitise users to the look and feel of a future system as well as being used in system testing to assist the early development of test cases and data.

Prototyping adds to the early costs of a system with the effort that is required to develop it but reduces costs later in reducing rework due to the improved specification. The intangible benefits of a sensitised user community are not to be underestimated.

3.5.2 Evolutionary v Disposable Prototyping for e-commerce systems

A prototype can be used in one of two ways:

· using a suitable development tool to incrementally develop a system in its entirety (evolutionary prototyping) or

· modelling elements of the system to elicit functional requirements and/or to test design options and concepts. Input form this process is incorporated into the system design but the prototype itself is not evolved into the full system (disposable prototyping).

Hybrid approaches are also practicable - perhaps re-using some of the prototype code in the final system or adopting an evolutionary prototyping approach for a small area of (or enhancement to) a larger system

In the development of e-commerce system prototyping has a key role. In a complex three tier environment consisting of interface objects, business objects and databases it will be often be necessary to explore concepts and technical options prior to producing a final quality system. It is the complexity of this environment that generally rules against a completely evolutionary development approach. Maintaining consistency of interface, code and data manipulation whilst adopting an evolutionary approach in any more than a trivial system is almost impossible. The impact of this inconsistency will be to increase the future effort involved in maintaining and enhancing the system.

User interface development should always include some significant element of prototyping as it is difficult (if not impossible) to specify interfaces accurately any other way.

3.5.3 JAD/RAD Techniques

The use of Joint Application Development (JAD) and Rapid Application Development (RAD) techniques can be summarised in the strap-line “Just do it”. There is a variety of proprietary and generic methods that share this development philosophy which all have the common elements of:

· Early and intimate involvement of users in the system and its development

· Rapid delivery of the components of the system (ie incremental development)

A JAD development will typically gather a small team of empowered users and competent developers who will, from a high level specification of requirements, evolve a software solution. Questions of functionality, implementation options etc are resolved within the team as they arise. In short an evolutionary prototyping approach is adopted. Compromises when balancing delivered functionality with available resource/money can also be made within the JAD team, usually within a pre-defined framework.

In an e-commerce environment the key element in deciding the extent to which these techniques are used depend predominantly on the size and life span of the system under development. The benefits of involving users intimately in the development teams are significant. We believe it is possible to realise these benefits in a non-RAD environment, thereby avoiding the pitfalls of large-scale evolutionary prototyping

3.6 Softer Systems Methods

3.6.1 Introduction

As an adjunct to more formal methods, such as those of the UML, softer methods may be used to assist in assimilating and highlighting human aspects and understanding of systems that may not necessary be well considered in more formal methods. Softer techniques take a holistic view of the "system" as a combination of humans and computers collaborating to a common end. The techniques considered are most useful in the early "enquiry" phases of a project as they seek to place a system development and what it hopes to achieve in the broader context of the business and the world at large.

Of the techniques considered, root definitions, CATWOE and rich pictures are elements of Checkland and Scholes (1999) Soft Systems Methodology. Brainstorming and story boarding are generically applicable techniques without a defined source.

3.6.2 Brainstorming

Brainstorming is a technique where a group of people and facilitator discuss a topic in an unconstrained way, saying (virtually) anything that comes into their mind about it. It is particularly useful when starting a project to explore strategic feasibility and elicit requirements.

The rules are simple:

· all ideas are good; ideas are not judged by the group

· all ideas are owned by the group, not by any one individual

· all ideas become public property; anyone is allowed to expand upon them

As ideas emerge, they are immediately recorded on a white board, flip chart or other medium that is readily visible and legible for the whole group. Discussion continues as long as it is lively. If necessary some focus can be given to the session by seeding the group with a number of questions such as:

· What business needs does this system support?

· What are our competitors doing in this area?

· Does the system support or hinder team work?

· Do we need to do this at all?

Judgement is only applied to issues raised in the brainstorm after it is complete. Requirements elicited are incorporated into Use Case diagrams and subsequent models. Issues of strategic feasibility are documented and referred to in later stages of the lifecycle.

3.6.3 Root Definitions

The root definition of a system seeks to capture in one (usually long) sentence what a system is to do for whom under what conditions and to what level of quality. In short it defines what the system is and what are its objectives. The root definition provides the focus for every subsequent development activity.

Although creating a root definition may seem trivial, it is not until one has tried to do it that the difficulty of the task is realised. All elements of CATWOE (see below) should be incorporated into the definition.

A root definition for the HotHouse might be:

" A system, owned by the HotHouse, which enables HotHouse clients and potential to enquire after and purchase products and services from anywhere in the country at any time whilst supporting HotHouse staff with focussed information to enable them to manage, charge for and account for the provision of these products and services"

3.6.4 CATWOE

A key factor in formulating a root definition is to consider the elements C A T W O E

C
customers

the victims or beneficiaries of T

A
actors

those who would do T

T
transformation process
the conversion of input to output

W
Weltanschauung

the worldview that makes T meaningful in context

O
owners

those who could stop T

E
environmental constraints
elements outside the system which it takes as given

Although couched in the language of Soft Systems Methods (SSM) the core elements are the transformation process T which converts inputs to outputs and Weltanschauung, W which put the transformation into context. For any relevant, purposeful activity, there will be a number of different transformations by means of which it may be expressed. Each of these will be derived from different interpretations of its purpose ie from different Weltanschauungen. A simple example might be a public library, as shown in Figure 3.32:

[image: image34]
Figure 3.32 Transformation processes for aspects of a public library.

Once the root definition has been established, models of the transformation processes (Use Cases) can be created, much more mindfully of differing perspectives of the system than might otherwise be the case.

3.6.5 Rich pictures and other informal models

A rich picture is a pictorial representation of all or part of a problem domain which express, in a condensed form, relationships and concepts that would otherwise require lengthy textual descriptions. This technique is particularly useful in communicating with technical and non-technical people alike.

[image: image68.wmf]Login

entry /

validateTime

do / get

U

serName

do / get

P

assWord

l

ogin

Duration:

time

l

ogin

time out

Login

entry /

validateTime

do / get

U

serName

do / get

P

assWord

l

ogin

Duration:

time

l

ogin

time out

There are no specific conventions, syntax or rules laid down for rich pictures. The aim is to aid understanding.

Figure 3.33 models the issues and benefits for young designers in the HotHouse incubator units (see case study)

3.6.6 Storyboarding

Storyboards, as shown in Figure 3.34, are another pictorial technique to assist in the definition of navigation within an application. This technique is useful in exploring issues broader than simple navigation in the early phases of a project by enabling users to visualise how an application may function, without necessarily detailing every nuance of functionality on the storyboard itself.

[image: image69.wmf]Name

entry /

entryAction

()

exit /

exitAction

()

do /

activityInState

State variables

Name

entry /

entryAction

()

exit /

exitAction

()

do /

activityInState

State variables

Figure 3.34 Story board for possible HotHouse on-line course selection and registration.

This technique can be used as a focus on a whiteboard, flip chart or similar or can be drawn up in advance for discussion. It is surprising how many issues are unearthed from such a relatively simple diagram.

3.7 Testing Techniques

3.7.1 Introduction

Rigorous and frequent testing is one of the key elements in ensuring that the development of software produces robust, performant software that meets user requirements. Good testing aims to produce a system that does what it is supposed to do in the correct manner and, equally importantly, doesn't do what it shouldn't do.

Testing should be carried out as early as possible - not just when programs are written and functionality is usable but at all stages of the lifecycle. The cost of fixing faults rises exponentially through the development of a system and the probability of faults occurring drops exponentially through the lifecycle (see Fig 3.35).

[image: image70.wmf]Student: John

Smith

«business»

:Student

«business»

:Reservation

«business»

:Course

0: register student

1:

contractStudent

()

2:

getDetails

()

3:

updateStatus

()

4: The course is

reserved

Course Registration

Student: John

Smith

«business»

:Student

«business»

:Reservation

«business»

:Course

0: register student

1:

contractStudent

()

2:

getDetails

()

3:

updateStatus

()

4: The course is

reserved

Course Registration

The testing techniques that are used at various stages of the lifecycle differ, but all have the common philosophy that a successful test is one that exposes a defect in the artefact being tested. The defect can then be provably fixed at the earliest (cheapest) point in the development. All testing relies upon comparing actual behaviour against an accurate and detailed definition of what is correct and incorrect behaviour. It is not possible to perform good tests at any stage of the lifecycle without this definition.

Whatever the phase of the lifecycle, the less uncertainty there is, the easier it is to spot errors ie the easier it is to test successfully.

The results of all tests, together with enough detail to enable the developers to find and correct non-compliant areas, should recorded and communicated to the development team, if they are not doing the testing themselves. Finding problems is a waste of time if they are not corrected!

3.7.2 Incremental v Regression Testing

Whatever the deliverable/scenario under test striking the right balance between incremental and regression testing is a challenge. Incremental testing tests only the deliverable/scenario that is new since the last test, regression tests everything (or at least more that only the new artefacts).

It is to be expected that amending one part of a model, program, object or other artefact may have an effect, often unexpected, on other artefacts. The resource generally required to retest every related artefact each time a minor change is made precludes this degree of rigour. Indeed the endless repetition of the same tests may even be self-defeating. Testing only changes may also lead to significant oversights. A common-sense balance must be struck between incremental and regression tests. Being aware that regression testing should be considered at all is a good start.

3.7.3 Use Case scenario testing

When business and/or software processes have been modelled with use cases each use case scenario should be checked in detail. This can be carried out by gathering the relevant expert users and developers with detailed knowledge of the processes involved to "bench test" each use case. A facilitator is required to enable the activity. Each scenario is examined in detail. Errors, uncertainties and omissions are identified and documented by a nominated scribe, leading to a correct scenario. The level of detail of each scenario should be such to precisely describe the process. The philosophy of this exercise should at all costs avoid a "blame culture". An error found at this stage must be celebrated as a success in improving the quality of the product, rather than a bad job is having been done by whomsoever is responsible for creating the use case scenario.

3.7.4 Prototype Reviews

If elements of a system's functionality have been prototyped, a prototype review should be carried out to check that the functionality is what is required and is delivered how it is required.

A similar group of expert users, possibly developers and a facilitator as for the use case scenario testing should be assembled. The users work through the use cases using the prototype system on a computer to test the functionality. It may be necessary to fill some gaps in functionality with imagination and good stories but, for the most part, this is not difficult. Errors, omissions, uncertainties and areas of difficulty or "clunky" processes are again identified and documented.

The outputs from this exercise may be incorporated into a further version of the prototype or if the prototype fairs well, incorporated into the design of the system proper. Further versions of prototypes are tested in the same way.

This technique can also be used to explore user preferences to alternative ways of delivering functionality.

3.7.5 Structured Walkthroughs

Structured walkthroughs (also known as peer reviews) are another effective method of identifying faults in the models that are created in specifying a system. A group of subject experts, developers and other technical people who may not be directly involved with the specific project are again assembled. A walkthrough must also have a facilitator and a nominated scribe. For this exercise to be effective, each person involved must have received detailed information on the models to be walked through in advance of the meeting.

Each model is explored and questioned. Questions and issues are either resolved swiftly by the model, resolved swiftly by the developers or not resolved swiftly at all. Whatever the outcome, each question and response is documented. The key element of a structured walkthrough is that unsatisfactory answers are documented - solutions are not sought in the forum of the meeting. The development team is tasked with resolving the issues after the walkthrough is complete. Every issue discovered in this process is celebrated as one less error in the system.

The success of a walkthrough as a quality enhancing activity relies on:

· the timing of the walkthrough - too early and information will be too unclear and have too many gaps and errors, too late and it becomes increasingly difficult and expensive to correct faults

· the quality of preparation by developers and participants - all participants should be familiar with the content of the work being walked through in advance of the meeting

· the ethos of the walkthrough itself - a positive attitude must prevail - a witch-hunt and/or an unfocussed talking shop must be avoided at all costs

The walkthrough technique can be applied to most stages of the lifecycle but is most effective for requirements elicitation, model checking and implementation planning.

3.7.6 Build testing
Although not directly concerned with the build phase of the lifecycle it is worth mentioning some considerations of build testing.

Each component (and cluster of components) of the system should be tested by the developers using a variety of techniques including:

· White box testing - where each part of a component will be tested based upon an intimate knowledge of how the component functions (and hence an intimate knowledge of dodgy areas). Each thread through a component should be tracked and tested.

· Black box testing - where a component will be tested by checking its outputs for given inputs, ignoring any knowledge of internal structure of the component

· A balance of incremental/regression testing

Although each component has been tested successfully, it does not guarantee that they work correctly together when they are integrated into a whole system.

System testing is carried out when integrating components using similar techniques as for component testing (but with different test data, plans and expected results).

When the system is good enough, the User Acceptance Testing phase commences.

3.7.7 User Acceptance Testing (pre-release)

User acceptance testing can be considered as the ultimate “black box” test. The UAT phase of testing is similar in approach to the Use Case scenario testing and prototype investigation carried out during earlier phases of the project lifecycle, but are carried out in much more depth and on software that is alleged to be fully functional.

The efficacy of pre-release UAT in ensuring a quality system is even more important in an e-commerce environment. In B2B and B2C models, the system will be used by suppliers and customers and, as such, may be the major point of contact between a business and its trading partners. The negative marketing impact that a poorly conceived and implemented system can make is far reaching. The risk of this happening can be reduced with effective testing.

Aspects of the system that should be tested are:

· Basic functionality (including navigation and security)

· Data driven functionality

· Usability

· Performance

The results of each test, together with enough detail to enable the developers to find and correct non-compliant areas, should recorded and communicated to the development team.+

Each of these aspects is described in more detail below.

3.7.7.1 Usability (including basic functionality and navigation)
Usability and its related functionality is, at first glance, a seemingly obvious and simple aspect of a system to get right. Despite this, it should be rigorously tested.

All fundamental aspects of the interface should be checked (ease of use, colours, size, spelling, fonts, position, consistency, conventions etc). All controls should be checked to see that they invoke the correct screen/dialogue box/data set/pull-down list/report/parameters/functionality etc, etc. In order to check for correctness, it must be known what the expected functionality is under each set of circumstances - in short the relevant Use Case (in conjunction with any prototyped functionality. These sources of information should be converted into a Test Case scenario. This includes procedures/sequences of operations and expected results,

An often overlooked area of this type of test is access security. If an application is built to allow different categories of user different level of access to data and functionality, each case should be checked for correctness ie what functionality/data can a user with a particular security profile access and what can they do with it.

3.7.7.2 Data driven functionality

Data driven functionality testing can be considered as further functional testing which is extended to includes verification of:

· arithmetic and date related calculations eg:

· do calculations produce the right results?

· if something should happen on a certain date, does it?

· are durations deduced from dates correct?

· data storage and retrieval eg:

· is the correct data retrieved (onto either soft or hard media)

· are sort sequences, groupings, delimiters etc correct

· interactive searching eg:

· do searches produce the right results (inclusions and exclusions) based on the parameters used

· are results sorted/grouped correctly

· boundary values eg:

· is behaviour correct on (and on either side of) boundary values

· do date ranges include or exclude start- and end-date values

· extremes eg:

· is behaviour correct for very large values

· is behaviour correct for very small values

· is behaviour correct from negative values

· will the application allow (and handle adequately) incorrect data types

An often overlooked area of this type of test is access security. If an application is built to allow different categories of user different level of access to data and functionality, each case should be checked for correctness ie what functionality/data can a user with a particular security profile access and what can they do with it.

3.7.7.3 Performance

Performance testing is another key area in ensuring a usable system. A non-performant system will not be used. This is troubling in a B2E system and may have a catastrophic impact on business in B2B and B2C systems.

The criteria for testing performance should be laid down in a performance agreement, struck between system providers and system clients/users during the requirements elicitation phase of the project. This specifies performance criteria in terms of response times and availability for specific nominated on-line and off-line critical elements of the system. Other, perhaps not-quite-so-critical elements of the system are covered by generic criteria.

Performance specification (and thus) testing is at best an heuristic exercise. The lack of control developers have of fundamental aspects of a software application, such as bandwidth, in an Internet environment means that “usual” criteria have to apply. For instance, an assumption can be made that most customers in a given B2C system will access the system using a moderately fast modem and that this will be the slowest link in the bandwidth chain. The design of the system from HCI to client/server functionality must be mindful of this constraint.

Performance testing should be carried out under whatever are deemed to be normal (or perhaps worse-than-normal) conditions in terms of number of concurrent users/processes, bandwidth, client/ server specification etc.

When all aspects of UAT have been satisfactory, it should be possible to sign off the system as acceptable using a high level checklist such as the one below.

Table 3.1 Acceptance Review Approval From for Hot House Web Site.
	Acceptance Review Approval From for Hot House Web Site

	Prepared by:
	Acceptance Review date:

 28 April 2001
	Page:

	
	
	1 of 1

	Acceptance criteria
	Rank:

(H/M/L)
	Results/comments

	Reliable performance on all use case functions
	
	

	Acceptable functionality on all use case functions
	
	

	Is easy to learn and use

	
	

	Accurate information in the content pages
	
	

	Consistent presentation in all Web pages
	
	

	Clear navigation (e.g., hyperlink, button, back home) in all Web pages
	
	

	Web site response time (screen to screen) less than 10 sec
	
	

	Processes a booking transaction less than 30 seconds
	
	

	Log and audit procedures satisfactory
	
	

	Access and data security satisfactory
	
	

	Provide clear, accurate and compete user guide
	
	

	Provide clear, accurate and compete technical and operations documentation
	
	

3.7.8 Post Implementation Monitoring

Post implementation monitoring of the system requires a number of questions to be asked at defined (and relatively frequent intervals):

· Does the system align with and support the businesses strategic direction?

· Does the system performance comply with requirements?

· Is the system a good ambassador for the business?

· Is additional functionality/content required?

· Is less functionality/content required?

· Is the maintenance burden of the system acceptable?

· Is the deployment architecture still valid?

· etc

The results of these (and more) questions should be integrated into the evaluation of the existing system for the next phase of system enhancement.

3.8 Performance Agreements

Early and unambiguous agreement between system developers and system stakeholders on the expected performance of all aspects of the system is critical to design and implementation decision taken at later phases of the lifecycle. Performance at this stage is considered as the user perception of performance in terms of response times and system availability. The advantage of early discussion of these points is that expectations can be maintained at realistic levels and also that the cost/performance compromise highlighted.

Control over factors that influence performance are often outside the control of the system developers eg server capacity of ISPs through which the system is accessed over the Internet. Despite this observation, the user observes only the end-to-end performance and judges the application (and the organisation responsible for it) accordingly.

Every system will have high profile elements for which the performance is considered critical. These must be identified specifically eg the time to return a usable list of courses that are scheduled within a specified date range for a specific topic. Other generic areas of the system must have "catch all" definitions of expected performance.

Availability may be measured in a number of ways:

· Outage -
the percentage of time that the system (or specified part of the system) is unavailable during the specified times for when the system should be available

· Mean time between failures - the average time that the system (or specified part of the system) is available between outages

· Mean time to fix -
the average time to restore the system (or specified part of the system) operation after it ceased to be available

Response times should be precisely defined, together with the factors that may influence them eg number of concurrent users, speed of connection, number of values returned from a search. It may be necessary to express response time in terms of percentage satisfaction

Eg 95% of transactions that invoke a list of courses must be returned and usable by the user with 5 seconds of initiating the search. The remaining 5% of transactions will invoke a list of courses must be returned and usable by the user with 15 seconds of initiating the search. All transactions will be measured with no more than 100 concurrent users on the system when accessed over the organisations internal LAN.

Later in the lifecycle, the performance agreement can provide a solid basis for maintenance agreements, escalation procedures in case of failure etc. Unsatisfactory end-to-end response time is one of the main reasons that systems are considered to be unsuccessful.

3.9 Component diagrams

There are two levels of design for a system: logical design and physical design. The logical design can be carried out by applying class diagrams, sequence diagrams/collaboration diagrams, and state transition diagrams. These diagrams represent the business domain in its logical view that the system should perform to support the business operations. The logical design does not present the physical aspects of the systems, e.g., the organisation and dependencies amount s et of components of the system. UML provides therefore the technique of component diagram.

A component in the systems is considered as a physical and replaceable part of a system that conforms to and provides the realisation of a set of interfaces. The UML defines five standard stereotypes that apply to components (Booch et al., 1999):

· Executable – specifies a component that may be executed on a node

· Library – specifies a static or dynamic object library (e.g., Java class library)

· Table – specifies a component that represents a database table

· File – specifies a component that represents a document containing source code or data

· Document – specifies a component that represents a document

These components can be modelled according to their relationships through an interface in a component diagram. This diagram describes the organisation and dependencies among software implementation components. It shows the structure of actual software components that will be used to implement the systems. It is useful when the developer assembles the individual components in various ways to produce a running system. A step by step guide for how the component diagram can be used at the physical design stage can be found in Boorch et al. (1999).

3.9.1 Design with component diagrams

A component diagram consists of three elements: component, interface and dependency. A component is rendered graphically in Figure 3.36. It has a unique name for the component, i.e., CourseResourceEXE. A dependency relationship can be specified between any two components. To link these components, interface can play a communication role that the messages and output can be passed between them.

[image: image71.wmf]<<ASP>>

Web

server

<<IE.5>>

Client

browser

<<Unix>>

Database

server

Page requests

<<TCP/IP>>

database requests

<<JDBC>>

<<ASP>>

Web

server

<<IE.5>>

Client

browser

<<Unix>>

Database

server

Page requests

<<TCP/IP>>

database requests

<<JDBC>>

[image: image35]The design with component diagram is considered as OO programming language dependent. Two major OO programming languages and commonly sued are C++ and Java. For example, to design the courseRegistration package with the component diagram, and assume that this package will be implemented in Java that embodies the logic for the allocation of resource of the course. The program of courseScheduleEXE will access to courseTable in the database to retrieve information about courseContent, and staff. Figure 3.37 shows the design of the model.

3.10 System Deployment

The deployment design is another type of implementation modelling at physical design level. UML provides a deployment diagram for developers to describe the configuration of run-time processing elements and the mapping of the software implementation components to the processing elements. They are made up of nodes and communication associations. Nodes are used to present computers (e.g., client PC, web server, and database server) and communication associations present the network, protocols and connectivity (TCP, IP, ODBC, and JDBC). An example of deployment diagram illustrates the design of three tiers of communications in Figure 3.40.

[image: image72.wmf]courseScheduleEXE

staff

courseContent

Course table

courseScheduleEXE

staff

courseContent

Course table

The on-line course registration application runs on a client PC, which is required to have IE.5 installed, a web server, which supports ASP processing the page requests, and an Oracle database to provide information on course content, course schedules, student and staff details on Unix. The database connectivity between the web server and database server uses JDBC since the design in the component diagram has chosen Java.

Some important tips recommended by Booch et al. (1999) for structuring and presenting deployment diagrams are

· To focus on communicating one aspect of a system’s static deployment view;

· To contain only those elements that are essential to understanding that aspect;

· To provide detail consistent with its level of abstraction, and expose only those adornments that are essential to understanding;

· To give a name that communicates its purpose;

· To organise its elements spatially so that things are semantically as well as physically close.

With the deployment diagram, one can visualise the static aspect of these physical nodes and their communications and to specify their details for contraction of the system.

Appendix A

Case Study - The HotHouse

The HotHouse is an organisation created in the mid-nineties as a collaboration of public and private sector organisations. The company operates from a renovated school to provide a range of services and facilities, predominantly to the ceramic industry.

The services and facilities include:

· New business incubation units

· Training courses

· Conference and meeting hosting

· Advanced technology 2-D and 3-D design suites

· Consultancy

These are described in more detail below.

New business incubation units

The initial idea behind the HotHouse was to provide inexpensive space for ceramic designers, often graduates from local institutions, to start their careers. To achieve this a number of small workshops, equipped with the necessary facilities are available for rent. The units are fine for two people, and cosy for three, depending on how much other equipment is also there. Designers or, more usually their company, hire the unit. The demand for these units is high, resulting in a waiting list and a maximum lease of two years. People on the waiting list are notified when a unit is available for rent. Rent is paid monthly The HotHouse is proud of its history of hosting designers who have subsequently gone on to great things and keep a good record of previous tenants.

Training courses

A number of training courses are offered on professional issues, new technologies, design-related IT products and business skills. The range of courses is expanding. The courses can be delivered at a number of venues:

· In the HotHouse meeting and conference suite

· In the HotHouse advance technology suites

· At clients’ premises

· In third party premises (such as hotels, Universities etc)

A course may last from one to five days and are delivered either by HotHouse staff themselves or, more often, by specialists who are brought in especially. The availability of suitable specialists, rooms, equipment, software etc is checked (and reserved) when a schedule of proposed courses is assembled.

The primary market for training courses consists of designers in a variety of industries. This includes an increasingly large number of Web Designers. Courses are scheduled on a regular basis. Advertisements are placed in the trade press and a register is kept of the contact details and interest areas of past course participants and enquirers after courses. Registered clients (or prospective clients) are informed of course schedules and other relevant HotHouse products and services on a regular basis. Great care is taken to avoid duplicate records, to ensure that registered clients are not sent more that one copy of information. There are certain clients to whom no information is sent as the HotHouse would not wish to repeat the experience of doing business with them.

When clients register for courses, a record is kept of who has registered for which course. If a course is fully booked, the client is informed and will usually book on to a subsequent delivery of the same course. If no subsequent delivery is yet scheduled, the client details are recorded as “to be informed” when the next delivery of that course has been scheduled.

On occasion, a course has to be cancelled or cannot run because not enough participants have registered. In this case, prospective participants are notified and will also usually book on to a subsequent delivery of the course. The same procedure as for full courses is adopted.

Course participants are invoiced after the delivery of the course. Charge rates vary depending upon the participant’s company (some companies receive discounts) and how far in advance the course was booked. Special discounts are applied to participants from HotHouse incubator units.

The HotHouse would like to implement a passport system for courses. The idea is that a prospective client buys a passport that entitles them to a significant discount for each course attended, up to a maximum number per year. The pricing of the passport would make it an attractive proposition for people who wish to attend two or more courses per year

Conference and meeting hosting

The HotHouse is able to providing a complete service in hosting meetings and one-day conferences. This includes a large meeting room, several “break-out” rooms, audio-visual presentation equipment, teleconferencing facilities, car parking, catering and all the other hundred and one items that are required. Each meeting and conference that is hosted requires different combinations of facilities and services, each of which is checked for availability when arranging details with prospective clients.

The charge for these services are decided on a case-by-case basis and agreed with the client in advance.

Advanced technology 2-D and 3-D design suites

 A number of rooms in the HotHouse are equipped with leading edge design hardware and software. There is also a rapid prototyping facility that enables designs created in software to be turned into a real artefact in hours rather than days or weeks.

These facilities are available for hire by the hour, by the day or on longer-term contracts, both to internal clients (who are based in the HotHouse incubator units and receive preferential rates) and also to clients outwith the HotHouse family. Training courses may also need to use these facilities.

A diary is kept in which the bookings of each facility are recorded, together with the details of the clients who have used them. For hourly and weekly hire, a fixed charge is levied for each facility. The charges for longer-term hire are arranged on a case-by-case basis and agreed with the client. Charging details are also recorded in the booking diary and invoices are prepared based up this information. This has the effect that access to the diary has to be restricted to certain HotHouse staff.

Consultancy

The HotHouse runs a small-scale consultancy operation, generally to the same client base that attends HotHouse courses. Consultancy work is either carried out directly by HotHouse staff or “brokered” to other specialists, more often than not either residents of incubator units or specialist trainers.

Consultancy services are charged on a case-by-case basis. If the HotHouse has brokered the consultancy, either the client is invoiced by the HotHouse and a payment made to the consultant or the consultant invoices 5the client directly and pays a brokerage fee to the HotHouse.

Strategic Positioning of the HotHouse

The HotHouse board sees the role of the HotHouse as an enabler of the ceramic and design industry locally, regionally and nationally. To this end profits are ploughed back into the company as improved facilities and services. Growth is possible but only to a point in existing premises with the existing range of services and delivery methods. Competition in the niche market is not considerable and is usually addressed by an alliance with the competitor (who is often an ex-tenant of the HotHouse) to broaden the range of services available to the industry

A major factor is the increasingly large geographical distribution of the client base due to the decline of the local ceramic industry. Should a similar range of services be offered competitively elsewhere in the country the alliance strategy may not be able to be adopted. There is a pressing need to increase the e-presence of the HotHouse in terms of marketing, registering (and retaining contact with) clients and prospective clients, information availability, on-line booking of courses etc.

The HotHouse are also aware that their internal systems to process and record business are neither as efficient nor effective as they might be. The facilities to maintain and access one source of electronic information for all aspects of the HotHouse products, services and business would be extremely beneficial.

The required system

The e-business system to be implemented should provide both internal and external users with a consistent view of HotHouse products, services and operations. All current operations must be able to be carried out, not necessarily in the same way they are currently and not necessarily by the same people.

It will be necessary to differentiate between users. All users will have access to public domain information (course schedules, company, product and service information etc). Remote users must have access to this information over the Internet. Other information will be restricted to particular clients (eg client contact information) and HotHouse staff. Additional information would be restricted to HotHouse staff (Quality manuals etc) and even more restricted access provided to sensitive information (eg financial information, evaluations of course delivery, appraisal information etc would be available to certain HotHouse staff and not others).

Disclaimer

Although based loosely upon the business domain of an existing organisation, all details of the HotHouse operations, products, services, strategy and requirements are wholly fictitious.

Appendix B

References

Ambler, S.W. (2001) “The Object Primer”, 2nd Edition, Cambridge University Press

Bezier,

Boehm, B.W.. (1986) A spiral model of software development and enhancement. IEEE Computer, 20(9):43-58, 1986.
Booch, G., Rumbaugh J. and Jacobson I. (1999) “The Unified Modelling Language User Guide”, Addison Wesley, New York.

Checkland, P. and Scholes J. (1999) “Soft Systems Methodology in Action”, Wiley.

Eriksson, H.E. and Penker M. (1998) “UML Toolkit.” John Wiley, New York.

Henderson-Sellers B. and Unhelkar B. (2000) “Open |Modelling with UML”, Addison Wesley, New York.

Kalakota, R. and Whinston A.B. (1997) “Electronic Commerce: a Manager’s Guide”, Addison-Wesley, Reading.

Nielson, J. (1999) “Designing Web Usability: The Practice of Simplicity”, New Aiders, New York.

Sommerville, I. (2001) “Software Engineering”, 6th Edition, Addison Wesley.
�

Figure 3.5 Super-use case and its sub-use cases.

Figure 3.35 Graphs of error probability and cost to fix.

�

Figure 3.3 Student, HH staff, and Receptionist performing their functions.

�

Figure 3.1 A use case diagram for On-line Registration System of Hot House.

�

Figure 3.2 Actor Customer and associated use cases.

�

Figure 3.4 HHStaff interact with more than one use cases.

- Object sequence diagram (II)

- Populated Class diagram

- Component diagram

- Packages

- Prototyping

- Testing techniques

- Performance Agreement

- Testing Techniques

- Performance agreement

Progress through lifecycle

- Use Case diagrams (II)

- Use Case scripts

- Class/Object diagram

- Interaction diagrams

- State and activity diagrams

- Prototyping

- Softer Systems Methods

- Testing techniques

- Use Case diagrams

Softer Systems methods

Prototyping

- Testing techniques

- Performance agreements

�

Figure 3.6 Generalisation among use cases.

�

Figure 3.7 Definition of <<include>>.

�

Figure 3.8 Definition of <<extend>>.

�

Figure 3.9 <<include>> relationship.

�

Figure 3.10 <<extend>> relationship.

�

Figure 3.11 <<extend>> relationship under different conditions.

�

Figure 3.36 A component of courseRegistration.

�

Figure 3.14 A class of Customer.

�

Figure 3.15 Customer class with public and private attributes.

�

Figure 3.16 Customer class with scoped features.

�

Figure 3.17 Generalisation.

�

Figure 3.18 Association connecting classes for course registration.

�

Figure 3.19 An association with navigability adornment.

�

Figure 3.20 A shared aggregation between Catalogue and Course.

�

Figure 3.21 The composition aggregation.

�

Figure 3.12 UML techniques connectivity (after Henderson-Sellers, 2000).

�

Figure 3.22 A reference for sequence diagram.

�

Figure 3.23 Links associated with messages.

�

Figure 3.24 The sequence diagram for Course Registration use case.

�

Figure 3.25 The sequence diagram for Course Schedule use case.

�

Figure 3.26 A reference for collaboration diagrams.

�

Figure 3.27 The collaboration diagram for Course Registration.

Procurement		 	 Distribution		 Logistics

Extranets

Extranets

Intranets

Advertising			Sales		Customer Service

Manufacturing

and

Production

Engineering

and

Research

Accounting, Finance and Management

Suppliers and Other Business Partners

Suppliers and Other Business Partners

Consumers

�

Figure 1.3 A system architecture of B2C.

�

Figure 1.4 A system architecture of a B2B system.

�

Figure 1.5 A system architecture of B2E.

�

Figure 1.6 The integrated business models adopted by companies.

�

Figure 3.31 The state transition diagram for the object of Course Schedule.

�

Figure 3.30 A Login State (Eriksson and Penker, 1998).

�

Figure 3.29 A notation of a state.

Implement

Program

Test

�

Figure 3.28 The collaboration diagram for Course Registration.

Design

Analysis

�

Figure 3.40 Deployment diagram for on-line course registration application.

�

Figure 3.37 Component diagram of courseRegistration.

- Not considered in Analysis and Design view of SWAT framework

Input

(some entity)

Output

(that entity in a transformed state)

Transformation process

A local population

local provision of education

that provision enhanced

Home

dog-eared books

books

that population, better informed

�

Figure 3.33 Rich picture to illustrate HotHouse incubation unit issues and benefits.

Select course

Cost to remedy error

Probability of error

Register on course

Failure

notification

Success

confirmation

Confirm course

Progress through lifecycle

((((((((((((((((((((((((((((((((((
Sun, Westlake and Thomas
Page 58 of 58
Created July 2001

File: SWAT detail.doc

Printed on 11/2/2006 at 10:55

[image: image73.wmf]

_1064306092.ppt

Strategic Feasibility

Evaluation

Requirements

Elicitation

System

Deployment

Component

Build and Test

System Design

System Operation

System Analysis

Functional Testing

Evaluation

Evaluation

Evaluation

Evaluation

_1064337547.ppt

Consumer

Company Staff

Trading Partner

Internal

Company

Systems

B2E

B2B

B2C

_1061314323.ppt

Strategic Feasibility

Evaluate

Evaluate

Evaluate

Evaluate

Evaluate

Requirements

Elicitation

System

Deployment

Component

Build and Test

System Design

System Operation

System Analysis

Functional Testing

