

Faculty of Computing,
Engineering and Technology

IMPROVING THE QUALITY OF COMMERCIAL
SOFTWARE ENGINEERING THROUGH PROJECT

PLANNING AND MANAGEMENT
IN ALIGNMENT WITH CORPORATE STRATEGIES

MSc Computer Science

Gregor Dominik Porzel

gregor.porzel@gmail.com

059 649 62

A thesis submitted in partial fulfilment of the requirements of
Staffordshire University for the degree of Master of Science.

March 2009

Supervised by David Thomas

mailto:gregor.porzel@gmail.com

Abstract

Abstract

This work is concerned with the question why software engineering is still problematic
in many cases compared to other knowledge areas. The aim is to develop a method
which can improve planning and management of commercial software engineering
projects. To achieve this goal, this report investigates the current situation of the soft-
ware engineering discipline and describes detailed research into potential problem
sources. The findings of the literature review lead to the question whether recognition
and consideration of implicit corporate business factors and integration of these factors
into planning for commercial SE projects may be a potential key to successful com-
mercial software engineering projects.

Analysis of shortcomings in current planning methods and investigation into planning
for implicit corporate business factors result in the production of two artefacts: the
Commercial Software Engineering Planning Framework and the supporting software
prototype IntelliPlan.

This work conducts mainly secondary research, but comprises primary research in
validating the deliverables: the functional and semantic tests have shown that the con-
cept might represent a promising means to significantly improve the quality of com-
mercial software engineering.

Table of Contents

Table of Contents

List of Figures .. 1

List of Tables .. 3

Acknowledgements .. 4

1 Introduction ... 5

1.1 Key Contributions to the Body of Knowledge ... 5

1.1.1 Primary Contributions ... 5

1.1.2 Secondary Contributions ... 5

1.2 The Work in the Context of the Academic Community 6

1.3 Aim and Objectives .. 6

1.4 Research Question ... 7

1.5 Deliverables .. 7

1.6 Research Methodology .. 7

1.7 Ethical Considerations .. 7

1.8 Intellectual challenge ... 8

1.9 Chapter Overview .. 9

1.10 Research Project Time Plan .. 10

2 Literature Review: Consolidating Software Engineering 11

2.1 Introduction .. 11

2.2 Software Engineering: The Emergence of a New Discipline 11

2.3 Software Process Models and Methods ... 13

2.3.1 What Types of Programs require a Structured Development Approach? . 13

2.3.2 The Reasoning behind SE Models and Methods 14

2.3.3 The Waterfall Model ... 15

2.3.4 The Spiral Model .. 17

2.3.5 Rational Unified Process ... 17

2.3.6 Further Approaches of Models, Methods and Paradigms 19

2.3.7 Which Approach is the “Right One”? ... 20

2.4 Difficulties Faced by the Discipline and Potential Solutions 21

I

Table of Contents

2.4.1 Individual Tasks and Technology ... 22

2.4.2 The Nature of Software ... 24

2.4.3 SE Models and Methods ... 26

2.5 Academic Solutions or further Practical Problems? 27

2.5.1 Body of Knowledge & Education ... 27

2.5.2 Accreditation as a potential Silver Bullet ... 27

2.6 Legal Implications .. 29

2.7 The History of Engineering and Medicine in Contrast with SE 30

2.8 The Potential Origin of Intrinsic Difficulties with SE 31

2.8.1 Terminology .. 31

2.8.2 Managerial Aspects ... 32

2.8.3 Emotional Factors ... 34

2.8.4 Future Outlook .. 35

2.9 Summary and Conclusion ... 36

2.9.1 The Measures to Improve the Situation with Software Engineering 36

2.9.2 The Dilemma: Contradicting Methods ... 37

2.9.3 The Research Question: Implicit Corporate Business Factors.................. 38

2.9.4 Concluding Thoughts .. 39

3 Planning for Successful Commercial Software Engineering Projects . 40

3.1 Introduction .. 40

3.2 Exemplifying Commercial SE Projects .. 41

3.2.1 Business Application Development .. 41

3.2.2 Commercial Real-Time Application Development 42

3.3 What Constitutes a Successful Commercial SE Project? 42

3.4 Common Planning Tools to Implement SE Methodologies 43

3.4.1 Project Planning and Resource Management.. 43

3.4.2 Collaborative Project Planning and Document Management 45

3.4.3 Cost Estimation: COCOMO II .. 46

3.4.4 Additional Tools: Project Portfolio Management and Issue Tracking 47

3.5 Suitability of Planning Tools for Commercial SE Projects 48

3.5.1 Reaping Wheat versus Developing Software ... 48

II

Table of Contents

3.5.2 The Problems with Common SE Project Planning 51

3.6 General Project Planning and Management Concepts 51

3.6.1 PRINCE2 vs PMBOK ... 51

3.6.2 Six Sigma and COBIT .. 52

3.7 Conclusion .. 52

4 Implicit Corporate Business Factors .. 54

4.1 Introduction .. 54

4.2 Factor 1: Conflicting Corporate Objectives .. 55

4.2.1 Objectives of Corporate Finance and Senior Management 55

4.2.2 Objectives of Software Engineering ... 56

4.2.3 Objectives of Human Resource Management ... 57

4.2.4 Objectives of Legal and Marketing Departments 57

4.2.5 Conflicting Objectives: Potential Impact on SE Projects 58

4.2.6 Consolidation of Findings ... 60

4.3 Factor 2: Corporate Strategies ... 61

4.3.1 Industry Forces and Generic Strategies .. 61

4.3.2 Portfolio Matrices: The Growth/Share matrix .. 61

4.3.3 Competitive Advantage through the use of Information Technology 63

4.4 Factor 3: Management .. 63

4.4.1 Managerial Skills .. 63

4.4.2 Potential Correlation between Project Types and Degree of Managerial
Interference ... 64

4.5 Factor 4: Human Beings .. 65

4.5.1 The “People” – Factor ... 65

4.5.2 Invisibility and Mutual Reliance among People 66

4.5.3 Project-Specific Information ... 66

4.6 Conclusion: Consideration in Planning ... 67

4.6.1 Consideration .. 67

4.6.2 Integration of Factors into Project Planning ... 68

4.6.3 The Potential Link: Corporate Strategies .. 69

5 Planning for High Quality in Commercial SE Projects 71

III

Table of Contents

5.1 Research Input and Overview .. 71

5.2 Research Approach .. 71

5.3 Planning for Quality .. 72

5.3.1 Existing Definitions of High Quality Software... 72

5.3.2 A New Definition for High Quality in Software....................................... 72

5.4 The Commercial Software Engineering Planning Framework 74

5.4.1 Overview ... 74

5.4.2 Solutions Provided by the Framework .. 74

5.4.3 Approaches for Optimal Usage of the Framework 75

5.4.4 Stepwise Planning Model ... 76

5.4.5 Generic Strategy Selection Tool ... 80

5.4.6 Strategic Assessment Matrix ... 80

5.4.7 Software Planning Forces Model .. 81

5.4.8 Counterforce Decision Table .. 82

5.5 The Software IntelliPlan .. 83

5.5.1 Design Specification ... 83

5.5.2 Details on the Development .. 83

5.5.3 Problems and Solutions ... 86

5.5.4 Presentation of the Software ... 87

5.6 Summary and Further Suggestions .. 97

6 Testing and Validation ... 99

6.1 Overview ... 99

6.2 Validation Method ... 99

6.3 Functional Test of IntelliPlan .. 100

6.4 Semantic Validation by an Academic Expert .. 101

6.5 Semantic Validation by Industry Experts ... 102

6.6 Conclusion .. 103

7 Conclusion and Future Outlook .. 104

7.1 Key Contributions .. 104

7.2 Reflection on Achievements and Research Answer 104

7.3 Potential Commercial Value ... 105

IV

Table of Contents

V

7.4 General Strengths and Weaknesses ... 105

7.5 Recommendations for Further Research and Development 106

7.6 Future Outlook ... 107

7.7 Concluding Thoughts .. 107

References .. 108

Books ... 108

Conference Papers and Proceedings .. 110

Internet .. 111

Journal and Newspaper Articles and Transactions .. 112

Research Papers ... 113

Bibliography .. 114

Abbreviations ... 115

Appendix A: Counterforce Decision Table ... 117

Appendix B: Use Case Diagram for IntelliPlan .. 118

Appendix C: Class Diagram for IntelliPlan .. 119

Appendix D: Ethical Consent for Validation .. 120

Appendix E: Simulated Project Scenario ... 121

Appendix F: Contents of the CD .. 122

List of Figures

List of Figures

Figure 1 – Evolution of the Programming Systems Product (Brooks 1995, p. 5) 13

Figure 2 – Software Engineering Trends through the 1970s (Boehm 2006, p. 14) 15

Figure 3 – The Waterfall Model of the Software Life Cycle (Boehm 1988, p. 62) 16

Figure 4 – The Spiral Model (Sommerville 2007, p. 74)... 17

Figure 5 – The Rational Unified Process Model (Franklin 2005) 18

Figure 6 – Iterations and Increments (Bergström & Råberg 2003, p. 37) 18

Figure 7 – Relationship between Principles and Practice (Bourque et al 2002, p. 61) .. 21

Figure 8 – Essential difficulties of software as identified by F. Brooks (1987) 24

Figure 9 – ERP systems concept (Nah 2002, p. 37) .. 41

Figure 10 – Partial screenshot of the GUI (Graphical User Interface) of MS Project
2007 displaying a task-list and associated Gantt chart 44

Figure 11 –Screenshot of the software OmniPlan for the platform Mac OS X (The
Omni Group 2009) .. 45

Figure 12 – Screenshot of the cost estimation software COCOMO II 46

Figure 13 – Screenshot of RationalPlan Multi Project exemplifying the management of
a portfolio consisting of several projects (RationalPlan 2009) 47

Figure 14 – Behaviour of tasks which can be partitioned in a perfect manner (Brooks
1995, p. 16) ... 49

Figure 15 – Behaviour of tasks which cannot be partitioned (Brooks 1995, p. 17) 49

Figure 16 – Behaviour of tasks which can be partitioned but require communication
among workers (Brooks 1995, p. 18) .. 50

Figure 17 – Behaviour of tasks with complex interrelationships (Brooks 1995, p. 19) 50

Figure 18 – Implicit Corporate Business Factors (ICBF) .. 55

Figure 19 – Adaptive tensions (Johnson et al 2008, p. 40) .. 60

Figure 20 – The growth/share (or BCG) matrix (Johnson et al 2008, p. 279) 62

Figure 21– Relative amount of emphasis placed on each function of management
(Byars 1997, p. 10) .. 64

Figure 22 – Potential outcome of improved mutual consideration within a company .. 68

Figure 23 – The potential link to reconcile ICBF and the discipline of software
engineering .. 69

Figure 24 – Solutions for the difficulties with commercial SE planning 75

1

List of Figures

Figure 25 – Elicitation of implicit corporate business factors 76

Figure 26 – Elicitation of implicit project-specific factors which coincide with ICBF . 77

Figure 27 – Elicitation of explicit project-specific factors through common project
planning ... 78

Figure 28 – General example for a stakeholder influence map (MindTools 2009) 79

Figure 29 − Generic Strategy Selection Tool for software organisations; the concept of
generic corporate strategies was originally developed by Porter (1980) 80

Figure 30 – Strategic Assessment Matrix; adapted from McFarlan (1984 cited in Ward
and Peppard 2002) .. 80

Figure 31 – Software Planning Forces Model ... 81

Figure 32 – Example of a radar chart to graphically represent the distribution of
potential influence on commercial software engineering planning 82

Figure 33 – Main Menu which is displayed when the program is started 87

Figure 34 – Program information when the user selects the "About" button or
respective entry in the main drop-down menu .. 87

Figure 35 – Message box to ask the user to configure IntelliPlan 88

Figure 36 – Configuration interface for IntelliPlan ... 88

Figure 37 – Message box to avoid accidental amendments of an existing configuration
 ... 89

Figure 38 – User interface to create a new project and to edit an existing project 89

Figure 39 – Error handling of invalid data entered by the user 90

Figure 40 – Resource allocation tab... 90

Figure 41 – Mock-up version of a stakeholder influence map; source of inserted
figure: MindTools (2009) ... 91

Figure 42 – Message box to remind the user to set a strategic target 91

Figure 43 – Strategic Assessment Matrix integrated into IntelliPlan 92

Figure 44 – Main menu displaying a project loaded into the memory 93

Figure 45 – Main menu: Project Details tab .. 94

Figure 46 – Main menu: Corporate Strategy tab ... 95

Figure 47 – Example of tooltips for buttons on the tool bar .. 95

Figure 48 – Message box to ask the user whether the project shall be stored to a file .. 95

Figure 49 – Message box dialog for saving a file in case the filename already exists in
the selected directory .. 96

2

List of Tables

Figure 50 – User dialog to open an existing project file .. 97

Figure 51 – Error message in case an exception occurred due to a malformed XML file
 ... 97

Figure 52 – Code for a method to test XML serialisation for IntelliPlan 100

Figure 53 – Test results as displayed in MS Visual Studio 2008 101

Figure 54 – Use case diagram for IntelliPlan ... 118

Figure 55 – Class diagram for IntelliPlan .. 119

List of Tables

Table 1 – Research Project Time Plan ... 10

Table 2 – Counterforce Decision Table ... 117

3

Acknowledgements

4

Acknowledgements

The author is grateful to Dave, who provided guidance for the project not only in a
formal way but through mentoring the author concerning awareness, consideration,
compassion, enthusiasm and life in general.

Also, he is thankful for the support of Andreas, Harald, Mani and Schorschi who are
loyal friends. The author expresses many thanks to his fellow students Ali and Sebas-
tian who helped to spark ideas through discussions.

The catering employees of Staffordshire University need to be mentioned at this point,
as they not only managed to take the focus away from technical topics for a few min-
utes (in order for the author to return to research with a refreshed mind), but also pro-
vided delicious coffee.

This dissertation is dedicated to my parents Theodor and Christine Porzel.

1 – Introduction

Chapter One

1 Introduction

This chapter introduces the research on how the quality of commercial software engi-
neering projects can be improved through aligning the project planning and manage-
ment with corporate strategies. The structure of the work allows the reader to learn
about the topic of software engineering and related areas while progressing through the
seven chapters.

The following sections convey the context and scope of the topic as well as an over-
view of contributions to the body of knowledge in the field of software engineering. In
addition, this chapter outlines the context of the academic community with respect to
the findings of this work. Aim and objectives of the work undertaken are provided to
form the basis for a list of deliverables which are produced in order to provide a sound
answer to the research question stated in this chapter.

Further sections comprise a brief description of the applied research methodology,
ethical considerations, a statement concerning the intellectual challenge and an over-
view of following chapters. This introduction chapter closes with the time plan for the
research project.

1.1 Key Contributions to the Body of Knowledge

1.1.1 Primary Contributions

A major contribution of the research constitutes findings concerning the problematic of
existing software engineering project planning methods, concepts and tools. Further-
more, consolidation of factors which might influence commercial software engineering
projects may add value to the body of knowledge. The creation of a framework based
on these findings could address the issues with commercial software engineering pro-
jects elicited in the research.

1.1.2 Secondary Contributions

The literature review provides a sound and concise overview of how the software engi-
neering discipline emerged. Furthermore, potential reasons for prevailing issues with
software projects as well as possible solutions are investigated through analysing,
comparing and contrasting predominantly acknowledged scholarly sources.

Also, a suitable prototype was developed to support the framework and to enable effi-
cient validation of the theory. This adds value to the body of knowledge in that accu-
rate validation can be crucial when formulating an answer to the research question.

5

1 – Introduction

1.2 The Work in the Context of the Academic Community

Software engineering is a topic of fairly wide range. For example, the body of knowl-
edge contains highly specific technical research as well as rather generalised method-
ologies for project management. The research in this work is aimed at the planning of
software projects. However, in order to improve project planning, potential problem
sources faced by software engineering projects are investigated. This in turn leads the
work having to comprise not only software engineering-specific methods and models,
but also to include influencing factors from a higher vantage point.

Therefore, albeit the research is focused on the creation of a suitable planning concept
for commercial software engineering, many findings may be utilised by other fields as
e.g. real time- or research and development projects.

1.3 Aim and Objectives

The aim of this dissertation is to develop a method which can significantly improve the
planning and management of commercial software engineering projects.

The objectives of the work to support achievement of the aim are as follows:

• Investigation of the current situation of the software engineering discipline.

• Research into potential issues of software engineering from academic- and
practical viewpoints.

• Comparison of long-established and accredited engineering disciplines with
software engineering.

• Investigation into adjacent, potentially influencing areas as e.g. corporate fi-
nance and business management: this research is to elicit potential impact of
external project conditions on software engineering.

• Based on the research findings: creation of a framework to enhance and im-
prove planning and management of commercial software engineering projects.

• Development of a project planning and management software application proto-
type to support the framework and improve the accuracy of the validation.

• Reasonable functional tests and semantic validation of the deliverables in col-
laboration with one academic expert and two industry experts using a simulated
project scenario.

• Provision of a sound conclusion including reflective summary, recommenda-
tions for further research and development as well as description of a potential
future outlook.

6

1 – Introduction

1.4 Research Question

Is recognition and consideration of implicit corporate business factors and integration
of these factors into planning for commercial SE projects a potential key to successful
software engineering projects?

1.5 Deliverables

 A report containing

o research progress (literature review and research chapters)

o development of artefacts (framework and prototype)

o presentation and documentation of the prototype

o validation of deliverables

o conclusion.

 A disc containing

o digital version of the report in two different file formats

o the source code for the software prototype including the solution file
and project files for the usage with Microsoft Visual Studio 2008

o the compiled version of the software prototype in the form of an instal-
lation routine.

1.6 Research Methodology

The literature review and analysis of existing project planning tools constitute secon-
dary research. Where appropriate, research chapters other than the literature review
contain references to sources from the literature, too.

Primary research was conducted to validate the deliverables: the opinions and ideas
expressed by academic and industry experts contribute not only to the validation chap-
ter, but were also considered when formulating the conclusion.

1.7 Ethical Considerations

This project complies with the ethical regulations of Staffordshire University. In order
to insure compliance with these regulations, the following steps were applied in a dis-
ciplined manner during validation of the project:

 The participants were informed about the validation procedure in advance and
they were asked whether they fully understand the procedure.

 It was made clear to the participants that their participation is voluntary.

7

1 – Introduction

 The participants were informed that the validation is not observational and is
conducted in a cooperative manner.

 The participants were informed that they can withdraw from the validation at
any time and for any reason.

 Participants were given the option to omit questions they do not wish to provide
an answer for.

 It was made clear to participants that their personal information and collected
data is being treated with full confidentiality. Furthermore, they were informed
that published information of any kind will not be identifiable as theirs.

 Participants were informed that they have the option to be debriefed regarding
the outcome of the research project they contributed towards.

 No participants were misled in any way.

The steps above fully comply with the Staffordshire University Fast-Track Ethical Ap-
proval Form for students.

The ethical consent form which was handed out to participants can be found in Appen-
dix D.

1.8 Intellectual challenge

Firstly, as mentioned above, software engineering comprises a vast amount of knowl-
edge areas. Thus, revision and critical evaluation of the existing software engineering
body of knowledge and related fields pose an intellectual challenge, because research
areas need to be chosen with care and justifiable focus. Furthermore, the literature con-
cerning external factors potentially influencing software engineering projects such as
legal aspects is to be explored in the same manner.

Secondly, findings of the literature review have to be sound enough in order to form
the basis for further research chapters. This also applies to the research chapters as they
have to provide sufficient relevant input for production of the artefacts (framework and
software prototype).

Thirdly, the development of the software application to support the framework and aid
in validation presents technological challenges: the prototype shall possess a user-
friendly graphical interface as well as needs to reflect the theoretical framework in a
practical way. In addition, functional tests are to be conducted to insure the application
has a low error rate and is ready for semantic validation in collaboration with experts.

Fourthly, validation of the deliverables is to be integrated into the work without bias or
modification and interpreted in a sound manner. This insures that the findings can be
used as an information source to form a meaningful conclusion.

8

1 – Introduction

1.9 Chapter Overview

The research, artefact and validation chapters begin by briefly introducing the findings
of the respective previous chapter. This enables the reader to progress through the work
in a random fashion. However, readers who decide to follow the chapters in numerical
order may find that their knowledge and understanding of software engineering and its
role in companies unfolds beyond mere research findings. The intention behind struc-
turing the work this way is to allow the reader to learn how the solution proposed in
chapter five came into being.

The literature investigation starts in chapter two, which forms the basis for consecutive
research chapters. This literature review sheds light on how and why the discipline
might have emerged and evolved the way it did. The chapter describes prevailing is-
sues and potential reasons for these difficulties. Furthermore, it elicits factors which
may be the key to successful software engineering projects.

In chapter three, analysis concerning planning for commercial software engineering
projects is conducted. This includes a presentation of existing project planning tools as
well as a discussion on the suitability of these common approaches.

Chapter four investigates potential factors which may be of importance to project suc-
cess. These factors are implicit, but could exert vital influence on commercial software
engineering projects. In addition, the chapter discusses the topic of quality from an un-
conventional new perspective.

Chapter five contains the description of artefact deliverables, which represent the prac-
tical results of the research. These include the Commercial Software Engineering Plan-
ning Framework and the software application prototype IntelliPlan.

Evaluation of the deliverables is outlined in chapter six and comprises functional tests
of the software prototype as well as semantic validation through an academic expert
and two industry experts.

Chapter seven provides a conclusion reflecting on research findings and deliverables.
In addition, the final chapter contains recommendations for further research and devel-
opment as well as a future outlook.

9

1 – Introduction

1.10 Research Project Time Plan

Activity Number of weeks

Chapter One: Introduction 1.5

Chapter Two: Literature Review – Consolidating Software
Engineering

4

Chapter Three: Planning for Successful Commercial Soft-
ware Engineering (SE) Projects

2

Chapter Four: Implicit Corporate Business Factors 2

Chapter Five: Planning for High Quality in Commercial
SE Projects

3.5

Chapter Six: Testing and Validation 5

Chapter Seven: Conclusion and Future Outlook 3

References, Bibliography and Abbreviations 1

Abstract and Review 0.5

Contingency Time (Including further Review) 1.5

Total 24

Table 1 – Research Project Time Plan

10

2 – Literature Review: Consolidating Software Engineering

Chapter Two

Several published works over the last decades describe difficulties when engineering
principles were applied to the development of software. The body of knowledge leads
to believe that these issues in turn could be the cause of delivery delays, budget over-
runs and failures of software projects. While some scholarly sources propose potential
solutions, others deny the existence of an ad hoc solution to the difficulties one encoun-
ters when developing the complex product that is software.

2 Literature Review: Consolidating Software Engineering

2.1 Introduction

The purpose of this literature review is to shed light on the current situation of the
software engineering (SE) discipline. The chapter begins with a brief historic overview
of SE and includes essential knowledge areas such as software process models and de-
velopment methods. The work continues to explore problem areas within SE in con-
trast with other engineering disciplines and potential solutions to these issues.

Also, this chapter provides investigation into SE from a rather unconventional perspec-
tive: few authors seek the root of the problems outside SE models as e.g. in common
misconceptions surrounding the discipline. One example is the recognition that the
term software engineering in itself might be ambiguous, potentially leading to the ap-
plication of inefficient methods as shown in subsection 2.8.1 of this chapter.

This chapter closes with a review of sources concerning the management of software
projects as this forms the basis for subsequent research- and investigation chapters.

2.2 Software Engineering: The Emergence of a New Discipline

The software engineering discipline was partially inspired by a situation which oc-
curred during the 1960s, denoted as the “software crisis”. This particular crisis “(…)
resulted directly from the introduction of third generation computer hardware” (Som-
merville 1993, p. 3). More powerful hardware allowed for software systems of hitherto
unprecedented functionality and size. “It was clear that better organized methods and
more disciplined practices were needed to scale up to the increasingly large projects
and products that were being commissioned” (Boehm 2006, p. 14).

There were two main reasons to call for more structured procedures in software devel-
opment:
firstly, “(…) existing methods of software development which worked fine with small
systems were not good enough for large systems. Techniques applicable to small sys-
tems could not be scaled up” (Sommerville 1993, p.3).

11

2 – Literature Review: Consolidating Software Engineering

There are many areas where there is no such thing as a crisis — sort
routines, payroll applications, for example. It is large systems that
are encountering great difficulties. We should not expect the produc-
tion of such systems to be easy.

(Naur & Randell 1969, p. 9)

(The implications of developing large applications rather than smaller programs are
elucidated in more detail in subsection 2.3.1).

Secondly, structured development turned out to be inevitable, for during the 1950s
“(...) the prevailing thesis was (...) Engineer software like you engineer hardware.”
(Boehm 2006, p.13). Software however can be modified with much less effort than it is
the case with hardware, which “(...) led many people and organizations to adopt a code
and fix1 approach to software development, as compared to the exhaustive Critical De-
sign Reviews that hardware engineers performed (...)” (Boehm 2006, p.13). Brooks
(1995, p. 218) cites Coqui (1989) who identifies that “The driving force to use Soft-
ware Engineering principles in software production was the fear of major accidents that
might be caused by having uncontrollable artists responsible for the development of
ever more complex systems”.

Hence, there was an apparent need for regulation to enable large-scale high quality
software development – preferably by outlining a new engineering discipline.

In 1968, the infamous NATO Software Engineering Conference was held at a time
when the number of installed computers in Europe did not significantly exceed 10,000
machines. It was during this conference when “(...) the term [software engineering]
was coined in 1968 by F.L. Bauer of the Technological University of Munich (...)”
(Dijkstra 2007, p.6).
“The Conference was to shed further light on the many current problems in software
engineering, and also to discuss possible techniques, methods and developments which
might lead to their solution” (Naur & Randell 1969, p. 8). As early as 1969, profes-
sionals in the field must have anticipated the emergence of a new discipline that could
impact many aspects of peoples’ lives: “One of the major motivations for the organiz-
ing of the conference was an awareness of the rapidly increasing importance of com-
puter software systems in many activities of society” (Naur and Randell 1969, p. 9).
Since the time when the conference took place, numerous methodologies2, methods,
process models and paradigms were added to the SE body of knowledge. The follow-
ing section is to provide a guide to some of these widely acknowledged software de-
velopment concepts.

1 Code and fix refers to modification of program code in a rather unstructured manner.
2 With regard to software engineering, methodologies can be seen as a means of combining SE models
and methods, depending on project conditions and -attributes.

12

2 – Literature Review: Consolidating Software Engineering

2.3 Software Process Models and Methods

2.3.1 What Types of Programs require a Structured Development Approach?

The development of large-scale applications is different from small computer pro-
grams. Brooks (1995, p. 4) uses the following example: “One occasionally reads news-
paper accounts of how two programmers in a remodelled garage have build an impor-
tant program that surpasses the best efforts of large teams”. He continues to explain
that such a program is “(…) complete in itself, ready to be run by the author on the sys-
tem on which it was developed” (Brooks 1995, p. 4), but also argues that the program
can be “(…) converted into a more useful, but more costly, object” (Brooks, 1995, p.
5). Figure 1 illustrates several options when developing a computer program. Moving
across either horizontal- or vertical boundaries causes cost estimations to triple accord-
ingly:

Figure 1 – Evolution of the Programming Systems Product (Brooks 1995, p. 5)

According to Brooks (1995), the costs are nine times as much when producing a Pro-
gramming Systems Product (PSP) in comparison to production of a simple program.
However, in the long run, more expensive alternatives can yield advantages, as for ex-
ample low maintenance costs through sound documentation and better adaptability to
the target environment through generalisation. Also, in case a customer requests
changes of certain requirements, clearly defined interfaces can contribute to accelerated
implementation of such changes. Therefore, PSPs can turn out to be the more cost ef-
fective solution in the long run.

13

2 – Literature Review: Consolidating Software Engineering

2.3.2 The Reasoning behind SE Models and Methods

In order to ensure a high quality standard for software products, the development of
PSPs as described above needs to follow certain guidelines. Some of these guidelines
can be found in software process models. Also, regulation through models can aid in
preventing usage of the code and fix approach introduced in 2.2. This approach is one
of the main causes of high software maintenance costs, because it usually lacks docu-
mentation: even experts who are fluent in the respective programming language may
require some additional time to understand the behaviour of the program before being
able to change the source code3 of the application without a high risk of introducing
errors. The literature sometimes refers to this type of code as “spaghetti code”.
The consequence of engineering software in a laissez faire manner can pose serious
quality problems as identified by Boehm (1988):

1. Due to an absence of a design phase prior to coding, the program will become
increasingly unstructured during maintenance. This in turn will make subse-
quent corrections more expensive.

2. The software might be built right from a technical point of view, but the wrong
software may be developed from the perspective of the user. Hence, the fin-
ished application may fail to meet the requirements.

3. Fixing code produced using this type of approach can impose unnecessary costs
due to “(...) poor preparation for testing and modification.”
(Boehm 1988, p. 62).

Hence, sound approaches to SE are required to improve the ability to control, direct
and manage a software project and improve the quality of the resulting products.

With regard to the potential future of SE, vastly increasing size of programs will make
it more and more necessary to stay in charge of complexity: “Current trends are leading
us to systems of unthinkable scale in not only lines of code, but in the amount of data
stored, accessed, manipulated, and refined; the number of connections and interde-
pendencies (...) and the sheer number of people involved in some way (Fraser et al
2007, pp. 1028-1029).
Boehm (2008, p. 38) is of the opinion that software is crucial for collaboration and
communication in the 21st century and claims that “The world is going to need all the
capable software engineers or hardware and human factors engineers that understand
software that it can find”.

3 Source code: This term refers to the editable and human-readable code of a computer program which
has not yet undergone compilation (i.e. the automated translation into machine-oriented code).

14

2 – Literature Review: Consolidating Software Engineering

Figure 2 – Software Engineering Trends through the 1970s (Boehm 2006, p. 14)

As depicted in figure 2, the deficient methods of “crafting” software during the 1960s
resulted in ideas, which – decades later – form an integral part of planning for software.
One of these notions is the waterfall model:

2.3.3 The Waterfall Model

According to Boehm (1988), the waterfall approach is especially suitable for some spe-
cific types of software such as compilers or secure operating systems. However, Royce
(1970), who introduced the model (while refraining from providing an actual name for
the model), states his view: “(...) the implementation [of the waterfall model] is risky
and invites failure” (Royce 1970, p. 329). In addition, he provides five steps that “(...) I
feel necessary to transform a risky development process into one that will provide the
desired product” (Royce 1970, p. 335).

15

2 – Literature Review: Consolidating Software Engineering

Figure 3 – The Waterfall Model of the Software Life Cycle (Boehm 1988, p. 62)

Boehm (1988, p. 63) concedes that the waterfall model “(...) helped to eliminate many
difficulties previously encountered on software projects”. However, he also admits
fundamental issues of this concept: “A primary source of difficulty with the waterfall
model has been its emphasis on fully elaborated documents as completion criteria for
early requirements and design phases” (Boehm 1988, p. 63). He states that many pro-
jects comprised “(...) elaborate specifications of poorly understood user interfaces (...)
followed by the design and development of large quantities of unusable code” (Boehm
1988, p. 63).
Sometimes users can be more precise in describing what they do not want rather than
actual requirements. However, often users may find it difficult to provide this informa-
tion until they actually work with the software (or a prototype). For example, when us-
ing the waterfall approach to conduct a software project, small changes to the software
specification can mean for the entire project to be set back to the stages of require-
ments- and design. To make things worse, this could be the case even if such changes
would only affect a small component.
Therefore, problems with the model might predominantly originate from the rigid and
stepwise completion criterion, because “(...) there is only one entry and one planning
session: the beginning of the project (...)” (Bergström & Råberg 2003, p. 36). Sommer-

16

2 – Literature Review: Consolidating Software Engineering

ville (1993, p. 6) supports Boehm’s view by stating that “(...) the realities of software
development did not accord with the activities identified in the model”.

2.3.4 The Spiral Model

The spiral model addresses the shortcomings of the waterfall model in that it explicitly
recognises risk as an important factor for success in software projects (Sommerville
2007). The model was originally introduced by Boehm (1988, p. 71): “The risk-driven
nature of the spiral model is more adaptable to the full range of software project situa-
tions than are the primarily document-driven approaches such as the waterfall model or
the primarily code-driven approaches such as evolutionary development. It is particu-
larly applicable to very large, complex, ambitious software systems”.

Figure 4 – The Spiral Model (Sommerville 2007, p. 74)

Let us turn to nature and study complexity in living things, instead of
just the dead works of man. Here we find constructs whose complexi-
ties thrill us with awe. The brain alone is intricate beyond mapping,
powerful beyond imitation, rich in diversity, self-protecting, and self-
renewing. The secret is that it is grown, not built.
So it must be with our software systems.

(Brooks 1987, p. 18)

2.3.5 Rational Unified Process

The major advantage of the spiral model is that its incremental approach contains risk
throughout the project. The Rational Unified Process (RUP) model also emphasises
risk reduction in that “Risks need to be identified early in the project, along with their

17

2 – Literature Review: Consolidating Software Engineering

potential impacts and possible alternatives to eliminate or reduce them” (Bergström &
Råberg 2003, p. 38).

Figure 5 – The Rational Unified Process Model (Franklin 2005)

Iterations are crucial to the concept of RUP, because they enable the traversing of all
stages for several times during the project. This in turn results in one increment4 per
iteration (see figure 6).

Figure 6 – Iterations and Increments (Bergström & Råberg 2003, p. 37)

Ambler et al (2005) describes RUP as a flexible framework structure from which a be-
spoke internal SE process can be created. Furthermore, they state that it is a success-

4 Whereas iterations are measured in time, increments are measured in progress during development. For
example, progress can be expressed in lines of code or functionality (Bergström & Råberg, 2003).

18

2 – Literature Review: Consolidating Software Engineering

fully proven and tested concept. Information concerning an extended version (Enter-
prise Unified Process) of RUP can be found in Ambler et al (2005).

2.3.6 Further Approaches of Models, Methods and Paradigms

2.3.6.1 V-model
A modified version of the waterfall model is the V-model: “This model included vali-
dation and verification5 processes by associating testing activities with the analysis and
design phases” (Deek et al 2005, p. 13). Using this model, test specifications are to be
written during relatively early stages in the project. This in turn ensures that “(...) ear-
lier stages, such as requirements, high-level design, and low-level design, were prop-
erly accounted for in the later compliance stages of acceptance (...) integration testing
and unit testing” (Deek et al 2005, p. 13).

2.3.6.2 Structured Systems Analysis and Design Method (SSADM)
In the UK (United Kingdom), the Structured Systems Analysis and Design Method
(SSADM) has been used by the government for computing projects since it was
launched in 1981 (Eva 1992). SSADM comprises the production of sequenced mod-
ules, which is an approach that at first glance may resemble the waterfall approach.
“However, each Module is a self-contained set of activities, and must be managed as a
discrete project” (Eva 1992, p. 19).

2.3.6.3 eXtreme Programming (XP)
Rather radical approaches to software projects with less emphasis on planning are
sometimes being referred to as agile concepts. Sommerville (2007) identifies XP as one
of the most widely used agile methods. The basic idea is to discard rigid patterns which
may prevent SE teams from producing high quality code (Beck & Andres 2004). Be-
side other techniques, this may be achieved through utilising incremental development,
pair programming6 and strong customer involvement (Sommerville 2007). However,
“The customer may feel that providing the requirements was enough of a contribution
(...)” (Sommerville 2007). Increased involvement of client staff can become costly not
only for the customer, but also for the supplier of the software as some clients could
demand a price reduction in exchange for their participation in the development.

2.3.6.4 Rapid Application Development (RAD)
Rapid Application Development (RAD) is mainly useful for developing e.g. database
applications which may have no out-of-the-ordinary requirements. “(...) there is a great
deal of commonality across business applications (...). In essence, these applications

5 Whereas verification addresses whether a system is built correctly and according to plan, validation
addresses whether the “right” system was built – i.e. if the requirements were implemented correctly
(IEEE 610.12 1990 cited in Deek et al 2005).
6 Pair programming: developers work in pairs to insure that e.g. the work is double-checked and that the
best solutions are being elaborated via mutual support (Sommerville 2006).

19

2 – Literature Review: Consolidating Software Engineering

are often concerned with updating a database and producing reports (...). Standard
forms are used for input and output” (Sommerville 2007, pp. 405-406). Kerr & Hunter
(1994) state that RAD allows the delivery of systems with much higher quality than
traditional ones while reducing the time for development. However, such generalised
statements with respect to software development might be unrealistic, because it could
be the case that some SE methods cannot be applied to certain types of software. The
disadvantage of RAD lies in the restriction of scale: large systems require large teams,
which are in turn more difficult to organise using this approach (Sommerville 2007).
Also, implementation and integration of non-standard components can turn out to be
costly as “There is no explicit system architecture and there are often complex depend-
encies between parts of the system (...)” (Sommerville 2007, p. 407).

2.3.7 Which Approach is the “Right One”?

This question may be raised frequently in situations where different concepts to
achieve a certain goal are presented. One might recognise that it should be formulated
more precisely: which approach is the most suitable one for the respective project and
corporate environment.
On the one hand, small and medium enterprises (SME) may prefer agile methods
which produce little managerial overhead for small projects. Vast undertakings of large
organisations on the other hand, can involve up to thousands of stakeholders7. This in
turn can trigger the demand for a more structured- but rigid approach in order to stay in
charge of the complexity.

It needs to be emphasised at this point that successful usage of highly agile methods
relies strongly on the competencies of the individuals as well as on the team as a whole
including its leaders. The less SE experience is present in a team, the stronger the de-
mand for regulation becomes. This regulation can help to insure that the deliverables
meet the requirements and the project stays within time- and budget constraints.

7 In general, a stakeholder is a person who has an “interest” in the project. This can be a programmer, the
customer or internal departments as, for example, marketing and human resources.

20

2 – Literature Review: Consolidating Software Engineering

2.4 Difficulties Faced by the Discipline and Potential Solutions

van Genuchten (1991, p. 582) describes a survey concerning software development
projects, which was conducted by Jenkins et al (1984). 23 major U.S. (United States)
corporations were analysed and it was found that “The average schedule overrun was
22%.” and “(...) the cost and schedule overruns seem to be uniformly distributed
among large, medium, and small projects”.

With regard to IT (Information Technology) projects in general, recent articles demon-
strate that problems often prevail to date: “Everyone knows IT projects don’t work.
Twenty years ago the Standish Group produced its shocking conclusion that 80 per
cent of such projects failed. Our own research, with Harvey Nash, showed little im-
provement – a 63 per cent failure rate. Over the past two decades pretty much every
other piece of research has reached similar conclusions” (Elton 2008, p. 2).

In his book The Mythical Man-Month, Brooks (1995 reprint of 1975 edition) describes
large-system programming as problematic, stating that few were able to meet goals,
schedules and budget restrictions.

“Unfortunately industry experience shows that such projects to develop and install
large software systems are on average 50% late, with corresponding over-expenditure
and serious ‘teething problems’ even after delivery (...)” (Grimson & Kugler 2000, p.
541). Decades before this statement was made, Naur & Randell (1969, p. 10) have pro-
vided the following appraisal: “There was general agreement that ‘software engineer-
ing’ is in a very rudimentary stage of development as compared with the established
branches of engineering”.

Figure 7 – Relationship between Principles and Practice (Bourque et al 2002, p. 61)

The idea of applying engineering principles to the “construction” of software seems
appropriate at first, but might have some deeply-rooted flaws as shown in this section.
In the following, issues with SE as well as potential solutions to these problems are
discussed.

21

2 – Literature Review: Consolidating Software Engineering

2.4.1 Individual Tasks and Technology

Educational measures help to exemplify the difficulties with SE originating from un-
foreseen events: training was conducted at Loughborough University; modelled after a
similar course in a corporate environment. Dawson (2000) describes the training in his
paper “Twenty Dirty Tricks to Train Software Engineers”. The goal was to improve
preparation of students for the reality of working-life through simulation of real-world
conditions. Among further ideas, the following concepts were included:

 Simulation of customer behaviour (e.g. frequently changing or conflicting re-
quirements)

 Banning overtime

 Changing deadlines and teams

 Changing or crashing the hardware (!)

 Disrupting file stores

(Dawson 2000)

When discussing the results of this experiment, (Dawson 2000, p. 217) states that “The
real evidence (...) is in employers’ reaction to graduates (...). Employers have reported
back to the university that they found the students (...) to be particularly well prepared
for the workplace”.

Hence, one way of mitigating task-related issues with SE is to improve the training of
software engineers and developers. It is important to note that process models can in-
deed help to address some of the prevailing difficulties even if they fail to consider the
described eventualities: for example, the concept of RUP (see 2.3.5) can be helpful in
diminishing risk brought about by frequently changing requirements. The role of proc-
ess models to solve SE issues is discussed in more detail in subsection 2.4.3.
Dawson (2000, p. 218) also concludes that “If, as many employers believe, computer
science and software engineering graduates are ‘very knowledgeable, but not a lot of
use’ then there is much to be gained by playing a few ‘dirty tricks’ both at university
and during company induction programmes to introduce them to the realities of a real
software engineering development”.
The latter statement however has to be handled with care, because it raises questions
concerning the purpose of academic degrees: for example, should universities place an
emphasis on conveying theoretical knowledge or should scholarly teaching rather be
focused on preparing people for the working environment? Parnas (1999) sheds some
light on this issue by arguing that practical software engineering courses at universities
can- and even should coexist with more theoretical computer science programs. (Sec-
tion 2.5 provides a more in-depth discussion of the academic situation surrounding the
discipline of SE).

22

2 – Literature Review: Consolidating Software Engineering

Difficulties with individual SE tasks other than the issues described above have been
mitigated through technological advances over the past decades. Integrated develop-
ment environments (IDEs) helped to increase the productivity by providing useful fea-
tures, as e.g. automated error highlighting in source code as well as IntelliSense8. Fur-
thermore, programming libraries such as the Standard Template Library (STL) in C++
contain a collection of algorithms and data structures, which can reduce development
expenses through mitigation of the overall workload for the programmer. Also, this
type of reuse has the potential to improve the quality of the code as it decreases the
likelihood that developers introduce errors in e.g. complex standard algorithms. In ad-
dition, high-level languages aid in abating the complexity of programming languages
(Brooks 1987).

Results of a study on runaway9 projects, described in KPMG (1995 cited in Glass
1998, p. 15) show that despite the reduction of the difficulties described above, “Tech-
nology is a rapidly increasing cause of runaway projects”.
One possible reason for this may be that technological advances could reduce the com-
plexity of expressing and writing the program, but they might not reduce the complex-
ity of the software entity itself. Northrop (in Fraser et al 2007, p. 1028) states that “In-
novations have too often focused on the accidents not the essence and in some cases
have added greater complexity to software production”. Complexity and essence inher-
ent in the nature of software are discussed in more detail in the following subsection.

8 IntelliSense is the name for a feature in the Microsoft IDE Visual Studio and allows to automated com-
pletion of instructions while writing the code. This feature is especially valuable when using standard
libraries.
9 A runaway project “(...) is a [software] project that goes out of control primarily because of the diffi-
culty of building the software needed by the system” (Glass 1998, p. 3).

23

2 – Literature Review: Consolidating Software Engineering

2.4.2 The Nature of Software

Some of the problems explained above resemble “accidental difficulties” from the in-
famous article No Silver Bullet10 by Frederick P. Brooks Jr. (Brooks 1987):
accidental difficulties are issues encountered when creating software, but which are not
inherent in the nature of software itself. For example, low-level machine languages are
prone to attract syntactic errors. Albeit these accidental difficulties can be mitigated
through technological progress, Brooks (1987) identifies conformity, changeability,
invisibility and complexity as essential difficulties of software, which may be much
harder to come by than through improvement in technology.

Figure 8 – Essential difficulties of software as identified by F. Brooks (1987)

Conformity refers to the interfaces which software components provide in order to
communicate with other components or applications. These interfaces in turn contrib-
ute vastly to complexity which “(...) cannot be simplified out by any redesign of the

10 Brooks (1995) makes use of the term silver bullet as an allegory for the ultimate solution to difficulties
with software projects, which sometimes have the tendency to become uncontrollable werewolf mon-
sters.

24

2 – Literature Review: Consolidating Software Engineering

software alone” (Brooks 1987, p. 12). Changeability denotes the changing environ-
ment in which software operates. This includes neighbouring applications, users, un-
derlying hardware and even laws. “These all change continually, and their changes in-
exorably force change upon the software product” (Brooks 1987, p. 12).

With regard to complexity, Brooks (1987) argues that software systems can have or-
ders of magnitude more states than digital computers. Furthermore, function- and
method invocation is a concept that can increase the complexity of process flows in a
non-linear fashion. Invisibility refers to software being difficult to visualise, because in
many cases, more than one type of diagram may be needed in order to depict structure,
functionality and data flow of an application. Hence, despite even complex constructs
such as computer chips can be visualised, there is no similar geometric abstraction pos-
sibility for software (Brooks 1987). The usage of the Unified Modeling Language
(UML) to create e.g. class diagrams, use case diagrams and process flows can help to
mitigate this issue. However, “The reality of software is not inherently embedded in
space” (Brooks 1987, p. 12). Therefore, software is less “visible” and thus more elusive
than most products.

The author is of the opinion that out of the four difficulties presented above, complex-
ity and (resulting) invisibility may be the main obstacles one has to face when applying
engineering principles from other disciplines as e.g. construction engineering to the
creation of software.

For example, science based on math and physics often uses simplified models of com-
plex phenomena. A strong argument why this might not simply be applied to software
has been made by Brooks (1987, p. 11): “This [simplified models] worked because the
complexities ignored in the models were not the essential properties of the phenomena.
It does not work when the complexities are the essence”.

Glass (1998, p. 4) ascribes inaccurate cost estimations for software projects to the
complexity of constructing software and states that “(...) some say it is the most com-
plex task ever undertaken by human beings”.

“I believe the hard part of building software to be the specification,
design, and testing of this conceptual construct, not the labor of rep-
resenting it and testing the fidelity of the representation. We still
make syntax errors (...) but they are fuzz compared to the conceptual
errors in most systems.
If this is true, building software will always be hard. There is inher-
ently no silver bullet.”

(Brooks 1987, p. 11)

Lopez however argues in Fraser et al (2007, p. 1028) that “There is a ‘silver bullet’ – it
is the pursuit of personal and professional excellence – this when achieved, easily gives
us an order of magnitude improvement in software productivity. There is no ‘silver

25

2 – Literature Review: Consolidating Software Engineering

bullet’ from without – it must come from within”.
Northrop (in Fraser et al 2007) claims not to have come across a silver bullet and raises
the demand for more “great” software designers, too.

Parnas (cited in Fraser et al 2007, p. 1029) disagrees with this view and explains that
there is much routine work which needs to be done properly: “If we were relying on
such people [designers, architects and programmers of ‘great insight and creativity’] to
build our bridges, the ferry industry would be in great shape”. Sharing the view of
Brooks (1987) regarding complexity, he also states that progress in SE can stem from
building increasingly simple systems.

Apart from the argument that software should be developed incrementally and there-
fore be “grown” as mentioned in 2.3.4, Brooks (1995) also states that prototyping and
focus on requirements refinement can be promising ideas to mitigate difficulties with
the conceptual essence. In addition, he describes software reuse as such a respective
option. Sommerville (2007) considers software reuse as a means of reducing cost, risk
and duration of software projects as well.

2.4.3 SE Models and Methods

Perhaps the most obvious problem with standard SE methods and models may be that
they often fail to address the problematic described in the preceding subsections. One
could argue that it might not be the fault of the particular process model or SE method
if not every possible disruption scenario for projects is covered: after all, the purpose of
the software model can be at best to outline means of development.
However, this assumption constitutes a major problem, because planning for software
projects often heavily depends on models – especially with inexperienced teams or pro-
ject managers. Boehm (1988) expresses difficulties with his spiral model, stating that
the reliance upon peoples’ expertise when it comes to risk assessment is one of the
hurdles to broad successful usage of the spiral model. If the reality of the project exe-
cution accumulates contingencies which are not considered in the model and during
planning stages, then the project can have a relatively high likelihood to deviate from
the plan. Hence, there is an apparent need for SE models to address more of the diffi-
culties which could be encountered during SE projects.

As mentioned in 2.4.1, some models already mitigate problems stemming from indi-
vidual tasks. But can process models and methods consider all major contingencies and
eventualities without losing flexibility and without becoming “too heavy” for efficient
software engineering?

Brooks (1987, p. 17) presents his view concerning the planning stages of software de-
velopment: “Much of present-day software acquisition procedures rests [sic] upon the
assumption that one can specify a satisfactory system in advance (...). I think this as-
sumption is fundamentally wrong, and that many software acquisition problems spring
from that fallacy”.

26

2 – Literature Review: Consolidating Software Engineering

In conclusion, the issues presented in this section seem to require solutions on a level
which is different from SE models and methods. In order to conduct respective further
investigation, the following section explores scholarly attempts to solve the difficulties
with SE.

2.5 Academic Solutions or further Practical Problems?

2.5.1 Body of Knowledge & Education

Parnas (1999, p. 20) states that “Because of a rigid accreditation process (...) there is a
well-documented ‘core body of knowledge’ for each of the established engineering
disciplines. There is no corresponding body of knowledge for computer science”. The
Software Engineering Body of Knowledge (SWEBOK) addresses this issue by provid-
ing a compiled guide to widely acknowledged literature in the field: “For software en-
gineering to be fully known as a legitimate engineering discipline and a recognized
profession, consensus on a core body of knowledge is imperative” (Abran et al 2004, p.
1-1).

With regard to education, subsection 2.4.1 introduces the idea of a coexistence of
Computer Science (CS) programs (i.e. courses) and SE programs at universities: “Just
as the scientific basis of electrical engineering is primarily physics, the scientific basis
of software engineering is primarily computer science” (Parnas 1999, p. 20). He con-
tinues to state that “In the SE program, the priority will be usefulness and applicability;
for the CS program it is important to give priority to intellectual interest (...)” (Parnas
1999, p. 26).

2.5.2 Accreditation as a potential Silver Bullet

Concerning accreditation of academic SE programs, the SWEBOK-guide supports the
following view: “Without such a consensus [on a body of knowledge], no licensing
examination can be validated, no curriculum can prepare an individual for an examina-
tion, and no criteria can be formulated for accrediting a curriculum” (Abran et al 2004,
p. 1-1). Accreditation and consensus on a body of knowledge can facilitate customer
confidence in software organisations and is vital to legislative acknowledgement as
shown in 2.6.

Scientific SE projects seem to be less likely to reflect the described problems as op-
posed to commercial software projects: a recent example for a vast but successful sci-
entific undertaking can be found in the storage and data management for the Large
Hadron Collider (LHC) experiment at CERN: “(...) the very difficulties involved in
providing data management at such a scale have also ensured that the development of
genuinely robust and performant [sic] grid level middleware is well on its way to being
completed” (Stewart et al 2007, p. 77).
Furthermore, internal research- and development (R&D) software projects which can
be encountered mainly in large organisations, seem to cultivate similar positive condi-

27

2 – Literature Review: Consolidating Software Engineering

tions because they “(...) have a great deal of flexibility and freedom to accommodate
(...) such practices as prototyping, evolutionary development, or design-to-cost”
(Boehm 1988, p. 70).

Therefore, accreditation of SE courses is likely to improve the situation for projects
predominantly focusing on

• Software development for scientific endeavours

• Internal corporate R&D undertakings

It becomes apparent that the range of projects which may benefit from accreditation is
by far not wide enough.

Software engineering will not achieve the status of a true profession
until it has a similar accreditation system. (...) They [software engi-
neers] are expected to be able to apply mathematics and science (...)
to assure that the system they design will perform its tasks properly
when delivered to a customer.”

(Parnas 1999, p. 23)

The argument of Parnas above implies that the nature of all projects which software
engineers work on is related to engineering. Software engineers however work on non-
engineering related software projects, too. Therefore it could be a big mistake to inter-
pret the statement of Parnas (1999) above in such a way which might form the assump-
tion that a unified SE body of knowledge and accreditation can magically solve all of
the problems which the industry faces to date and will have to face in the future. The
example provided in this subsection is to emphasise the favourable conditions of cer-
tain scientific- and internal R&D projects over commercial ones, which on the contrary
can often be driven by high pressure resulting from competition and strategic intentions
rather than innovation or the achievement of high quality.

Hence, accreditation can help to improve the situation with SE in certain areas. How-
ever, the author is convinced that accreditation may not solve the difficulties SE is fac-
ing predominantly in competitive commercial areas such as Business Intelligence (BI).
With regard to consensus on a body of knowledge, the author believes that over the
long term, an increasingly unified knowledge base might bring about a more positive
situation in all areas of SE. This may include scientific undertakings, advocated large-
scale internal developments as well as commercial software projects.

28

2 – Literature Review: Consolidating Software Engineering

2.6 Legal Implications

Speed (1999) describes the legal aspects of accreditation using the example of the
American state Texas:

It is illegal to practice software engineering in Texas without a li-
cense. (...) [The] development of software for engineered systems —
including embedded systems, real-time systems (...) — is software en-
gineering. A person who performs software development work in
these areas without a professional engineering license or exemption
is breaking the law.

(Speed 1999, p. 48)

Bott (2001, p. 16) explains the situation in the U.S. as follows: “(...) the only people
who are formally allowed to describe themselves as software engineers are those who
are licensed in some other branch of the discipline and a company can only describe
itself as a software engineering company if it employs at least one professional engi-
neer licensed in another branch”. He also cites the so-called “Finniston Report” which
states, that “In every overseas country at which we looked the status of engineers and
engineering was high; it attracted high quality entrants and was accorded a priority in
social and industrial affairs that is generally lacking in the UK” (HMSO 1980 in Bott
2001, p. 7). In comparing respective regulations of the U.S. with the UK, he explains
the situation as follows:

The engineering profession is much more highly regarded in the USA
than in the United Kingdom and is subject to strict statutory legisla-
tion, going further than what the Finniston Report recommended. The
title of engineer is protected and the practice of engineering is re-
stricted. Very similar legislation exists in Canada.

(Bott 2001, p. 14)

Jones (1995, p. 99) warns that “If the software engineering community cannot rise to
the level of becoming a recognized profession and engineering discipline, we face an
uncertain future with ever-mounting prospects of unfriendly legislation and harmful
government actions”.
Therefore, even though accreditation may not solve the difficulties with SE in com-
mercial areas as concluded in the previous section, nevertheless it may provide a solu-
tion to legislative issues commercial software companies might soon have to face.

29

2 – Literature Review: Consolidating Software Engineering

2.7 The History of Engineering and Medicine in Contrast with SE

In the 18th century, formal groups of engineers began to emerge; the first being the
French Group for Bridges and Roads (Corps des Ponts et Chaussées), founded in 1716
in Paris (Bott 2001). “(...) a society of civil engineers was formed in England later in
the century. It was also in Britain that the first engineering grouping that aimed to rep-
resent the profession, and thus to be a professional body in the modern sense, was
formed” (Bott 2001, p. 6). The British Computer Society (BCS) which was founded in
1957, started with the purpose to exchange and disseminate knowledge about comput-
ing (Bott 2001).

“Large civil engineering structures have been built since before recorded history but it
is only in the last 150 years or so that their design and construction has been based on
theoretical understanding rather than intuition and accumulated experience” (Grimson
& Kugler 2000, p. 543). The authors cite Maginnis (2000) to emphasise the “(...) need
to move towards a certification process for software engineers” (in Grimson & Kugler
2000, p. 544).

Jones (1995) raises the question of what makes an engineering profession. He provides
a list of factors associated with recognised engineering such as a well-defined body of
knowledge, qualifying examinations and a code of ethical responsibilities; to name
only a few. An interesting aspect of his paper is the comparison of the software com-
munity with the medical profession:
“It’s been only 150 years or so since medical practice faced challenges similar to those
software faces today: It was an amorphous and fragmented community with many
questionable and unproven practices, and academic training spanned every possibility
from state of the art to totally inept” (Jones 1995, p. 99).

Lord Goodman (1986 cited in Grimson & Kugler 2000) criticises computer science
education by stating that people who were trained solely in this profession are unedu-
cated persons. Grimson & Kugler (2000, p. 543) formulate their viewpoint as follows:
“It is interesting to recall that the very same criticisms were levelled against universi-
ties which sought to introduce engineering degrees (...) in the mid-19th century”.

30

2 – Literature Review: Consolidating Software Engineering

2.8 The Potential Origin of Intrinsic Difficulties with SE

2.8.1 Terminology

The IEEE Standard Glossary of Software Engineering Terminology defines SE as fol-
lows: “(1) The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the application of engi-
neering to software” (in Abran et al 2004, p.1-1). Furthermore, the definition includes
research and educational aspects by adding “(2) The study of approaches as in (1)”.

Sommerville (1993, p.7) states “Software Engineering is an engineering discipline that
is concerned with all aspects of software production from the early stages of system
specification to maintaining the system after it has gone into use”. Albeit Sommerville
recognises the systematic approach of software engineers in order to produce high-
quality deliverables, he also concedes that the development of software is different
from approaches in other engineering disciplines: “Less formal development is particu-
larly appropriate for the development of web-based systems (...)” (Sommerville 1993,
p.7).

Boehm combines definitions of the terms software and engineering in the following
manner:

Software engineering is the application of science and mathematics
by which the capabilities of computer equipment are made useful to
man via computer programs, procedures, and associated documenta-
tion.

(Boehm 1981, p. 16)

With regard to the NATO conference in 1968 where the term was coined (see 2.2),
Dijkstra (1993) “(...) interpreted the introduction of the term ‘software engineering’ as
an apt reflection of the fact that the design of software systems was an activity par ex-
cellence for the mathematical engineer. But that interpretation of the term did not
sail well. (...) software engineering has become an almost empty term (...)”.

When considering the difficulties with SE presented in this chapter, an intriguing ques-
tion must be raised: does the term Software Engineering capture the nature of this dis-
cipline with sufficient accuracy? This question could be of high relevance; especially
for the usage of some process models and methods that may have potentially been in-
spired by- or derived from other engineering disciplines.

One cannot be sure whether a different choice of words would have created less severe
issues for the discipline of SE as a whole. Bryant (2000, p. 78) however argues that
“(...) the term itself carries with it a set of mixed cognitive implications that contribute
to the intellectual quandary surrounding software development”. In other words, the
term itself may often have caused people to approach software development in an un-
suitable manner.

31

2 – Literature Review: Consolidating Software Engineering

According to Bryant (2000, p. 78), this dilemma manifests itself in the fact that soft-
ware developers “(...) seem to wish to mimic engineers, and lay a claim for the status
of an engineering discipline; but commercial demands and consumer desires do not
support this”.

Even the NATO Conference Report, which essentially attests to the creation of the
term software engineering, contains an intriguing statement:

The phrase ‘software engineering’ was deliberately chosen as being
provocative, in implying the need for software manufacture to be
based on the types of theoretical foundations and practical disci-
plines, that are traditional in the established branches of engineer-
ing.

(Naur & Randell 1969, p. 8)

Given that an engineering approach may not be suitable for most commercial software
projects, creating the term software engineering out of provocative stimulus appears to
not have been a wise choice. However to be fair, it was virtually impossible for atten-
dees to the conference in 1968 to foresee the evolvement of the discipline over the dec-
ades that lay ahead.

A further indication of how delicate this terminological issue seems to be is contained
in the introduction to the paper “A View of 20th and 21st Century Software Engineer-
ing”. In this relatively recent paper, Boehm (2006) cites Merriam-Webster (2000) in
order to provide a definition for the word engineering. If the terminology alone would
not be an issue, then a contemporary scholarly paper on software engineering would
not need to make statements in its introduction to define the discipline it is aimed at.
Hence, the ambiguousness of the term software engineering seems to have not been
mitigated despite advances in the field of computing.

2.8.2 Managerial Aspects

An experiment was conducted with students who used an application which is a simu-
lator for software projects. Drappa and Ludewig (2000, p. 199) describe the motivation
behind the experiment as follows: “The best (and probably the only) motivation for
learning software project management is experience from projects that failed due to
insufficient management”. Drappa and Ludewig (2000, p. 207) come to a sobering
conclusion: software engineering “(...) is a strange field because its message is ex-
tremely simple, but still too demanding for most people. They pretend they understand,
but their behavior shows that they do not”. Albeit this statement was made with regard
to students rather than experienced experts, the findings should be taken serious for the
following reason:
The analysis of the simulated project experiment with students shows that students re-
peatedly made the same mistakes again. They did not reflect upon the outcomes of
their simulated projects (Drappa & Ludewig 2000). Most graduates will probably be-

32

2 – Literature Review: Consolidating Software Engineering

come more experienced as they progress with their careers in IT, but the question re-
mains whether the majority of specialists will change the inappropriate behaviour pat-
tern described above during their working-lives. Therefore, improving the situation
concerning project management competencies of students is important, given that
graduates with high potential are likely to become managers. If potential future leaders
are not willing to learn how to conduct SE the right way, they are prone to repeat the
mistakes which were made in the past over and over again. This in turn can lead the
issues with IT projects to prevail even longer into the future. Hence, education in the
field of SE has to address this problem with more intensity.

“Study after study of software estimation in practice has shown that most often cost
and schedule targets are set by marketers or customers, next most often by managers11,
and least often by the technologists who will do the work. Without control of their own
destiny, practitioners still get blamed when things go wrong” (Glass 1998, p.8). Even
though Glass (1998) ascribes deficient estimations to the choice of personnel, he con-
cedes how little is known in general about accurate schedule estimation for software
projects. “(...) it is simply the norm that schedule targets, and thus cost targets, are un-
reasonably short. Thus project achievement of them is at best problematic” (Glass
1998, p. 11). van Genuchten (1991, p. 589) combines findings from previous surveys
with his own studies, concluding that “Over-optimistic planning was cited as a prob-
able cause in all the studies which examined reasons for delay”. Concerning manage-
rial aspects, the most intriguing finding is as follows: project leaders and general man-
agers disagree on 60% of the reasons why projects ended up with schedule- and budget
overruns (van Genuchten 1991).

Grimson & Kugler (2000, p. 542) found that none of the causes of software systems
failures identified by Glass (1998) are technological: “(...) they are all related to soft-
ware management”. Drappa & Ludewig (2000) share this view and state that the de-
velopment of large software systems in particular constitutes a non-technical problem.
They justify this statement by describing the importance of planning and sound analy-
sis.

However, one needs to raise the question whether the pressures resulting from manage-
rial – and financial for that matter – demands are unique to the software industry?
Glass (1998, p. 11) presents his view concerning other knowledge fields: “Given the
intense competitive pressures of the last half of the 20th century, workers in all fiends
find themselves under the gun to do more than they can in too short a time”. Despite
having stated this argument, he continues to concede that “The problem for systems

11 With regard to cost and schedule estimations conducted by managers, it needs to be emphasised that
not all managers are technically inexperienced. Many people working in leading positions may have
gained experience in technical roles prior to their promotion to management levels.

33

2 – Literature Review: Consolidating Software Engineering

and software is worsened, however, by the fact that the field is so young, and because
we know so little about it compared to other fields, we are really never quite sure that
an unreasonable schedule is, in fact, THAT unreasonable” (Glass 1998, p.11).

2.8.3 Emotional Factors

Glass (1998) denies the existence of a “software crisis”, arguing that computers and
software are not only dependable and indispensable, but have proven successful in
many fields such as e.g. the provision of plane reservations, banking transactions and
by serving as equipment for space exploration. He blames vendors, researchers and
academics for “crying crisis” because in his view, they all gain something from keep-
ing the picture of a crisis alive. The findings of this chapter support some of the state-
ments made by Glass (1998): not all areas within the discipline are equally prone to the
difficulties encountered with software engineering. However, his view to deny the exis-
tence of a crisis oversimplifies what different people may mean when they make use of
the word “crisis”. The utterly normal maturing process of a new discipline has some-
times been denoted as a crisis, because difficulties with SE have caused and still con-
tinue to cause many commercial projects to be delayed or even to fail.

Some statements by Glass (1998) are of emotional nature: he expresses what could be
regarded as heroic solidarity with- and appreciation for “(...) all those pioneering soft-
ware practitioners who have struggled through the barriers in their path to make our era
truly the Computing era (...) May they be appreciated for their efforts, and lauded for
their success” (Glass 1998, p. 8).
The irony contained in the statement above is as follows: on the same page, Glass
(1998) asserts that estimation of software projects often does not lie in the hands of
practising experts (see citation in section 2.8.2). This however implies the notion that
software developers should get appreciated if a project turns out to be successful, but
that they cannot be held responsible in case a project fails (!) In his conclusion, Glass
(1998) addresses himself and fellow developers (who are presumably the intended
readership) as “nerds”. Affirmation of stereotypes could be deemed unprofessional and
does not help the discipline at all, because the illusory separation between IT special-
ists and other business departments may in fact be the biggest issue faced by software
engineering to date.

On the one hand, Glass (1998) has written a great book in which he identifies the im-
portant point that practitioners and experts are seemingly ignored when it comes to the
estimation of software projects. On the other hand, he fuels the dubious conflict among
internal corporate departments by strengthening the image of the typical “nerd” who
might be treated unfairly by managers. A similar example in the field of engineering is
provided by Bryant (2000, p. 85). He cites Johnson (1972) to argue that “(...) far from
being natural decision-makers, engineers were in fact imbued with a ‘trained incapacity
for thinking about and dealing with human affairs’”. Referring to the article No Silver
Bullet written by Brooks (1987), Fowler (in Fraser et al 2007, p. 1028) has the follow-

34

2 – Literature Review: Consolidating Software Engineering

ing view about this issue: “Sadly many big purchasing decisions in the corporate world
are not made by technologists – these days the werewolves are on the golf courses”.

Experts have to get over this immature behaviour of making such statements which
could lead to things only getting worse. The job of software experts is to think ahead
and work out how the situation can be improved from a software engineering point of
view without pointing fingers at one another.

2.8.4 Future Outlook

Glass (1994) predicts a vision of the year 2020 where both, the SE research community
and practitioners, work closer and more efficient together. Better collaboration can in-
deed be helpful to the discipline, as long as fairness is guaranteed: business factors of
SE projects such as corporate profit-driven interests (esp. in the short term) may not
always be reconcilable with research interests – even if this concerns internal research.

35

2 – Literature Review: Consolidating Software Engineering

2.9 Summary and Conclusion

The preceding sections form a literature review on software engineering. The chapter
covers the emergence of the discipline during the “early days” of software develop-
ment, introduces major SE concepts and discusses difficulties faced by the discipline.
In addition to contrasting potential solutions for these difficulties, the review explores
academic and legal aspects. Investigation into potential problem sources comprises the
analysis of terminological, managerial and emotional aspects including their impact on
SE.

2.9.1 The Measures to Improve the Situation with Software Engineering

The literature review has elicited measures which are discussed by scholars as promis-
ing solutions to prevailing difficulties with SE:

1. Adaption of proven engineering principles for software engineering

2. Engineering-focused education of software engineers

3. Accreditation of the discipline

4. Consensus on a body of knowledge

5. Agile methods

2.9.1.1 What the measures can achieve
These measures might be able to mitigate essential difficulties of software described in
2.4.2 such as conformity (e.g. by adapting engineering principles for sound definition
of interfaces) and changeability (e.g. by using agile development for requirements
elicitation, which can mitigate negative effects of frequently changing user require-
ments). Consensus on a body of knowledge might turn out to be equally helpful be-
cause the first step to controlling complexity and improving visibility of software ar-
chitectures is to have unified ways in which SE experts do their work. Furthermore,
some agile methods have an incremental nature which grows the software gradually
and thus can help developers to stay more in charge of increasing complexity – at least
during the development phases (see the adequate statement by Brooks in section 2.3.4
about software being grown rather than being built).

Also, the literature review has found that the measures 1–4 could potentially improve
the quality of those SE projects, which are

• Engineering-related (e.g. real-time systems)

• Scientific & non-profit

• Internal R&D

• Safety critical.

36

2 – Literature Review: Consolidating Software Engineering

For example, engineering-related software projects can benefit from accreditation, be-
cause it forms an important basis for legislation (see 2.6): the legal environment could
define whether “pure” software companies are permitted to conduct engineering-
related software projects.
Both scientific and non-profit-driven projects have no typical marketplace competition
as their purpose does not accompany a commercial business goal but rather serves the
purpose of the research.

Therefore, this type of projects could make better use of document-driven approaches
than other types of software developments. The reason might be that these projects are
less likely to run the risk of frequent changes in major requirements: end-users are of-
ten experts, specialists and engineers who may have a clear view on the exact purpose
of the software as opposed to requirements elicitation from corporate business users,
clerks and office staff. The latter may even be reluctant to accepting the potential
change brought about by the new software system, which makes collection of require-
ments less precise and more difficult.
Similar favourable conditions for the usage of document-driven approaches as is the
case with scientific projects, apply to internal R&D undertakings; with the only differ-
ence that profit is more likely to become a goal in the long run. With regard to safety-
critical software, these systems tend to have high quality requirements (e.g. zero error
rate), which in turn can trigger the need for detailed engineering-like documentation
and test.

2.9.1.2 What the measures cannot achieve
Despite the beneficial effects of the measures described above, the author is convinced
that these measures will not be able to entirely solve the “essential difficulties” of
complexity and invisibility. The problematic of complexity being inherent in software
is described in 2.4.2.
Concerning invisibility, the measures may pose solutions that are not practical enough:
a better way to mitigate this issue could be improvement of existing representation
techniques for software architecture (e.g. 3D visualisation).

A significant problem with the measures presented above is that they are not equally
effective on all types of software. Hence the sole and imprudent application of these
measures to the entire software engineering discipline could even cause delays in solv-
ing prevailing issues. This problematic is described in more detail in the following sub-
section:

2.9.2 The Dilemma: Contradicting Methods

The scholarly literature of software engineering reveals a contradiction: on the one
hand, some authors claim a demand for adaption of engineering principles to SE. On
the other hand, agile methods that work in the exact opposite direction are being advo-
cated. Unfortunately, sources demanding either solution do not consistently make clear
which type of software project the respective measure should be aimed at.

37

2 – Literature Review: Consolidating Software Engineering

It is obvious that measure number five (agile methods) seems to contradict the meas-
ures number one and two (an engineering-like approach). The reason why calls for im-
plementation of measures 1, 2 and 5 coexist despite this apparent contradiction, might
be as follows: diversified measures may have evolved naturally and implicitly as dif-
ferent types of software projects require different types of approaches. In the search for
a silver bullet however, many sources may have failed to investigate general suitability
of the respective measure.

Commercial profit-driven business application development in a competitive corporate
environment could be the type of software which is less likely to profit from imple-
mentation of measures 1–4. Despite this assumption, the author is of the opinion that
measures number 3 (accreditation) and 4 (body of knowledge) can indeed improve cus-
tomer confidence and facilitate cultivation of sound practices. However, these meas-
ures may be too unspecific to prevent commercial SE project failures.

The reason why engineering-related measures might not mitigate prevailing issues with
some commercial projects could be that these projects possess attributes for which an
engineering approach may not be an ideal choice. As mentioned above, different types
of software products require different types of development approaches. The emer-
gence of iterative-, incremental- and agile methods (see 2.3.5 and 2.3.6) indicate a gen-
eral need for more appropriate and innovative development approaches to e.g. BI sys-
tems, non-safety critical office software as well as web-applications.

2.9.3 The Research Question: Implicit Corporate Business Factors

As elucidated in this chapter, iterative and incremental approaches can be helpful when
a project faces frequently changing requirements. Despite these improvements on the
level of the SE models and methods, many commercial IT ventures continue to fail as
highlighted in 2.4. Thus, the question raised in 2.4.3 remains important: can process
models and methods consider all major contingencies and eventualities without losing
flexibility and without becoming “too heavy” for efficient software engineering?

Since even optimised models and methods turned out to be helpful to only a certain
extent, evidence from this literature review leads to believe that the source of problems
with commercial software applications developed in a competitive and profit-driven
environment may not solely originate from the actual approach. For example, manage-
rial factors (see 2.8.2) were identified to have a vast impact on software projects.

Therefore, more sophisticated process models and methods alone may not solve pre-
vailing difficulties of commercial software projects. This leads to the question posed in
the introduction chapter:

• Is recognition and consideration of implicit corporate business factors and inte-
gration of these factors into planning for commercial SE projects a potential
key to successful software engineering projects?

38

2 – Literature Review: Consolidating Software Engineering

2.9.4 Concluding Thoughts

Qualitative improvement of commercial SE projects requires an investigation into ex-
ternal factors to the project. These factors comprise e.g. managerial aspects and corpo-
rate goals. The following chapters present research findings on this topic and describe
the development of a practical solution which is expected to improve the situation for
commercial SE projects.

39

3 – Planning for Successful Commercial Software Engineering Projects

Chapter Three

The preceding chapter consolidates the term software engineering. Part of the literature
review conducts investigation into prevailing difficulties with a specific type of SE
venture. This undertaking was identified in chapter two as commercial software pro-
jects (usually in a competitive profit-driven environment). Also, findings of the previ-
ous chapter indicate that managerial aspects can have a major impact on the successful
outcome of commercial SE projects.

3 Planning for Successful Commercial Software Engineer-
ing Projects

3.1 Introduction

This chapter outlines the characteristics of commercial SE and defines what may con-
stitute a successful project of this kind. In order to link abstract SE methods and mod-
els to practical applications, section 3.4 provides an overview of project planning tools
and analyses the suitability of these applications (3.5) for SE projects. Investigation
into general project planning and management concepts is conducted in section 3.6,
before the chapter closes with a conclusion concerning the potentials as well as the dif-
ficulties of using these concepts and tools for SE.
Albeit the chapter starts out with a focus on commercial SE projects, most of the sec-
tions address general software engineering. However, commercial SE projects are de-
scribed in detail in this chapter as this forms the basis for further research in chapters
four and five.

40

3 – Planning for Successful Commercial Software Engineering Projects

3.2 Exemplifying Commercial SE Projects

3.2.1 Business Application Development

Business applications constitute non-safety-critical12 business software. One of its
main purposes is to maximise efficiency and reduce cost across corporate departments
such as e.g. human resources, marketing and accounting.

Some examples for business applications are

• e-Business (Electronic Business)

• Enterprise Resource Planning (ERP)

o Supply Chain Management (SCM) – e.g. details of suppliers

o Customer Relationship Management (CRM)

o Product Lifecycle Management (PLM)

o Business Intelligence and Data Warehousing

o Software for accounting purposes

• Software to support product development: Computer Aided Design (CAD)

Some ERP and CAD systems can be purchased as ready-to-use software. Adapting
such applications to a particular client organisation may require modifications which in
turn can result in higher costs.

Figure 9 – ERP systems concept (Nah 2002, p. 37)

Furthermore, the following type of business software can be of great interest with re-
gard to analysis of commercial SE projects:

12 Non-safety-critical refers to the safety of human beings. Hence, failure of the system poses no ultimate
threat to human lives.

41

3 – Planning for Successful Commercial Software Engineering Projects

• Bespoke individual software applications that are knowledge-specific computer
programs for a certain field, as for example

o Artificial Intelligence (AI) systems to support consulting activities

o 3D computer graphics engines

o Electronic Commerce (EC) software (e.g. corporate website)

Bespoke SE projects may be relevant to the research described in this work because
usually no blueprint exists for the software which is to be developed. Specialised appli-
cations for certain business areas can be vital in enabling or maintaining the strategic
advantage of an organisation over its competitors as shown in 4.3.

3.2.2 Commercial Real-Time Application Development

“The notion of real-time system, as it is currently accepted, describes a computational
process that has to respond to internal or external stimuli in determined periods of
time” (Ionescu & Cornell 2007, p. 3). Examples for commercial real-time applications
are radar-systems in aircrafts, software for the management of nuclear power plants
and software to control airbags in cars.
Commercial real-time applications are taken into account throughout the research, for
this type of software project has an intriguing potential: it seems to be able to mitigate
some negative effects of the factors such as managerial intervention (see 4.4.2).

3.3 What Constitutes a Successful Commercial SE Project?

Depending on which stakeholder is concerned, the views of what constitutes success in
SE projects can vary strongly. For example, customers may require the software to
have as few bugs (i.e. errors) as possible; preferably none. High quality is expensive
and thus sometimes it might be difficult for management of software companies to find
the balance between customer satisfaction and internal development costs. Managers of
software companies might deem projects successful which are delivered within a rea-
sonable time span, functionality which might have some bugs but allows the customer
to work with (e.g. core modules) and in some cases a seamless transition to mainte-
nance contracts after which bug-fixing can be commenced. Hence, management may
be of the opinion that a successful SE project is one which may not be perfect from a
technical point of view, but which satisfies the majority of stakeholders and generates
profit for the software organisation.

Therefore, taking into account the findings from the literature review and the practical
experience of the author, a successful commercial SE project possesses the following
attributes:

1. The project is delivered with no overrun in budget or time. Given the findings
in section 2.4 which are drawn from industry figures, a realistic demand for

42

3 – Planning for Successful Commercial Software Engineering Projects

schedule overruns would constitute no more than 15-20% of the given project
time. However, the goal for SE must be to meet budget and time constraints.

2. The stakeholders are satisfied to an extent where the project can be signed off
as delivered. Signing off the contract can be seen as a confirmation that stake-
holders are satisfied with the deliverables. However, the remaining uncertainty
is that stakeholders who are in fact not satisfied could sign off the project any-
way in order not to have a project failure on their record.

3. No additional resources are required other than planned prior to commencing
the project.

4. The undertaking generated reasonable profit for the software company, which
allows the organisation to grow.

Further attributes can be internal success milestones set by the respective enterprise.

3.4 Common Planning Tools to Implement SE Methodologies

The Merriam-Webster Online Dictionary (2009) defines the word methodology as fol-
lows:

1. “a body of methods, rules, and postulates employed by a discipline: a particular
procedure or set of procedures”

2. “the analysis of the principles or procedures of inquiry in a particular field”

Some of the models and methods described in detail in the literature review can be
combined to form methodologies. For example, the implementation stage of the water-
fall process model may be conducted using XP (see 2.3).

The purpose of this section is to shed light on the efficiency of some common tools,
which can help implementing planning methodologies that are often rather abstract.
The tools represent only a small fraction of applications which are available in the field
of project planning and management. However, the following examples provide an
overview of key functionalities and attributes shared among many of these software
packages and online services.

3.4.1 Project Planning and Resource Management

This type of software is non-collaborative, which means that it usually stores data in a
local project file. The software is not designed for multi-user access e.g. via the intranet
of a company. Therefore, only one user can edit a certain project at a time as changes
do not get distributed automatically to other users.

3.4.1.1 MS Project
Perhaps one of the most well known products for project planning is Microsoft (MS)
Project. Its main functionality enables the user to create a project plan by defining
tasks, timelines and milestones. Furthermore, resources can be managed and allocated

43

3 – Planning for Successful Commercial Software Engineering Projects

to tasks. The software provides different views as e.g. task list, Gantt chart and re-
source usage. In addition, MS Project is able to display the critical path which empha-
sises tasks that may be crucial for finishing the project on time.

Figure 10 – Partial screenshot of the GUI (Graphical User Interface) of MS Project 2007 display-

ing a task-list and associated Gantt chart

It requires additional effort from the user of MS Project to allocate resources to indi-
vidual tasks in a way that prevents both underutilisation and unrealistic working hours.
Also, changing project conditions may result in a situation where the user of MS Pro-
ject has to spend extra time on amending the plan in a consistent manner.

Especially in the field of SME, where companies seem to prefer agile planning ap-
proaches, the author has made the experience that companies use predominantly the
core functionality of MS Project: for example, the software is used to create tasks,
timelines including estimated workload and milestones. This plan can help to provide a
visualisation of estimation figures to their customers, which in turn can aid in justifica-
tion of costs.
However, situations might occur where customers demand actual information on inter-
nal resource allocation. Such incidents can be triggered by political motives in case, for
example, the customer commissioned other projects with the software company. It
could be that the client wants to insure that none of the projects are being neglected due
to e.g. reallocation of superior developers to other projects. In this particular case, agile
usage of MS Project to simply create an overview of tasks would not be appropriate.

3.4.1.2 OmniPlan
Some project planning software packages, as for example OmniPlan for the platform
Mac OS X, resemble the core functionality of MS Project. In addition to slightly dif-
ferent GUIs, these tools may offer some features as e.g. exporting project plans in a
suitable format to be imported into calendar applications.

44

3 – Planning for Successful Commercial Software Engineering Projects

Figure 11 –Screenshot of the software OmniPlan for the platform Mac OS X (The Omni Group

2009)

In conclusion, off-the-shelf software packages like MS Project and OmniPlan can be
useful to visualise the workload and to plan for individual tasks. However, extra effort
may be required from the user when creating a detailed plan which comprises resource
allocation and allows for consistent amendments (e.g. to consider contingencies) as the
project progresses.

3.4.2 Collaborative Project Planning and Document Management

Collaborative applications allow an interactive coordination of the project by involving
analysts, developers and other stakeholders in the project planning and management
process.

3.4.2.1 Zoho Projects
This online project management (PM) platform is hosted online and provides not only
collaboration functionality such as forums and document sharing, but also management
of tasks, milestones and calendars. In addition, it supports time tracking for accounting
purposes and creation of reports containing Gantt-charts (Zoho 2009).

3.4.2.2 Artifact LightHouse
This is perhaps one of the most comprehensible applications which are hosted online.
Beside other functions, it encompasses management of changes and tests, requirements
management, bug tracking (see 3.4.4), document- and task management as well as gen-
eral project planning functionality. Furthermore, the application provides timesheets
e.g. to measure productivity and profitability of the team (Artifact 2009).

45

3 – Planning for Successful Commercial Software Engineering Projects

3.4.2.3 MS SharePoint
Some requirements may change during the course of SE projects, which makes central-
ised document management and versioning indispensable. MS SharePoint provides –
beside other features – online collaboration among team members to publish docu-
ments, maintain task-lists and create individually customised portals for its users (Mi-
crosoft 2007).

3.4.2.4 LiquidPlanner
LiquidPlanner is hosted on Linux servers but supports major web browser applications
for client-side usage. Using this software, project plans can be centralised and accessed
by individual team members. One particularly intriguing feature of LiquidPlanner is
the management of uncertainty in project schedules: the software uses statistics to pro-
vide estimations on the likelihood of finishing tasks by certain dates (LiquidPlanner
2008).

3.4.3 Cost Estimation: COCOMO II

Cost estimation for software may be difficult due to the complexity of software (2.4.2).
Even though the described project-planning software packages usually include func-
tionality to estimate costs, Boehm et al (2000) provide a more sophisticated model:
COCOMO II (COnstructive COst Model).

“COCOMO II is an objective cost model for planning and executing software projects.
(…) COCOMO II supports contract negotiations, process improvement analyses, tool
purchases, architecture changes, component make/buy tradeoffs, and several other re-
turn-on-investment decisions with a credible basis of estimate” (Boehm et al 2000, p.
xxvii).

Figure 12 – Screenshot of the cost estimation software COCOMO II

46

3 – Planning for Successful Commercial Software Engineering Projects

The model provides a range of mathematical equations, but comes with a graphical ap-
plication which disburdens the user from calculating the formulas manually. However,
the software requires the user to understand individual factors such as KASLOC: “Size
of the adapted component expressed in thousands of adapted source lines of code”
(Boehm 2000, p. 392).

3.4.4 Additional Tools: Project Portfolio Management and Issue Tracking

An example for project portfolio management is the software RationalPlan Multi Pro-
ject.

Figure 13 – Screenshot of RationalPlan Multi Project exemplifying the management of a portfolio

consisting of several projects (RationalPlan 2009)

This software package enables the user to handle dependencies between projects and to
share resources among projects (RationalPlan 2009).

With regard to the management of individual technical tasks, tools like Bugzilla or
Trac provide so-called issue tracking (also: “bug-tracking”) functionality, which help
to manage and track software errors and individual change requests made by the cus-
tomer. For example, the project manager or support department can use Trac for task
allocation: tickets are created from task information and then assigned to developers.

47

3 – Planning for Successful Commercial Software Engineering Projects

3.5 Suitability of Planning Tools for Commercial SE Projects

As of the 2nd quarter of the U.S. fiscal year 2009, what do these three people have in
common: (1) a software engineer working for NASA (National Aeronautics and Space
Administration), (2) a speleologist (cave scientist) and (3) the U.S. secretary of the
treasury? – They use Microsoft Project to investigate black holes.

The question needs to be raised why so many software projects still fail to meet dead-
line- or budget constraints (see section 2.4), despite the availability of allegedly sophis-
ticated planning applications like MS Project. The answer could lie in the generic na-
ture of most planning tools: rather than being specifically aimed at SE project planning,
virtually any kind of project which is based on individual tasks can be planned using
these rather generic planning applications.

In order to better understand the core of the problem, one has to investigate the nature
of a software project and how it differs from projects in other knowledge areas:

3.5.1 Reaping Wheat versus Developing Software

Brooks (1995) makes a statement which can be considered as rather shocking, given
that the widely acknowledged de-facto standard for estimating and scheduling effort in
software projects is the man-month13:

“Cost does indeed vary as the product of the number of men and the
number of months. Progress does not. Hence the man-month as a unit
for measuring the size of a job is a dangerous and deceptive myth. It
implies that men and months are interchangeable.”

(Brooks 1995, p. 16)

He argues that men and month can only be interchanged for tasks which require no
communication among workers. “This is true of reaping wheat (...) it is not even ap-
proximately true of systems programming” (Brooks 1995, p. 16).

13 Man-month refers to the amount of work one person can complete in one month. The same applies to
man-hours, man-days or man-years with units changing accordingly.

48

3 – Planning for Successful Commercial Software Engineering Projects

Figure 14 – Behaviour of tasks which can be partitioned in a perfect manner (Brooks 1995, p. 16)

If tasks have sequential constraints, then assigning additional resources does not neces-
sarily have positive effects on the schedule. Brooks (1995) illustrates this issue using
the examples of debugging and system test. Since the first edition of his book was re-
leased in 1975, debugging technologies have been evolving and allow for a certain de-
gree of parallelisation. However, the author has experienced prevailing sequential con-
straints for system tests in late stages of the project and modular software development:
for example, despite being able to test completed assemblies using mock interfaces, the
integration and final test of intercommunication among finished assemblies has to be
delayed until development of all components with respective dependencies is finished.

Figure 15 – Behaviour of tasks which cannot be partitioned (Brooks 1995, p. 17)

For tasks which can be partitioned, Brooks (1995) points out the burden of communi-
cation among people working on subtasks, which can trigger worse results than what
could be expected from an even trade of men for month:

49

3 – Planning for Successful Commercial Software Engineering Projects

Figure 16 – Behaviour of tasks which can be partitioned but require communication

among workers (Brooks 1995, p. 18)

Training is also a factor which can generate more workload when adding human re-
sources. Brooks (1995) cites Vyssotsky (n.d.) to emphasise that training cannot be par-
titioned and added effort varies with the number of workers in a linear fashion.

Highly dependent tasks can result in a vast amount of intercommunication. “If each
part of the task must be separately coordinated with each other part, the effort increases
n(n-1)/2. (...) If (...) there need to be conferences among three, four, etc., workers to
resolve things jointly, matters get worse (...). The added effort of communicating may
fully counteract the division of the original task (...)” (Brooks 1995, p. 18).

Figure 17 – Behaviour of tasks with complex interrelationships (Brooks 1995, p. 19)

Thus, in some cases “Adding more men lengthens, not shortens, the schedule” (Brooks
1995, p. 19).

50

3 – Planning for Successful Commercial Software Engineering Projects

3.5.2 The Problems with Common SE Project Planning

In order to sell to a broad customer base, many off-the-shelf project planning applica-
tions such as MS Project are designed in a generic fashion. These products can be used
to plan for projects in virtually any knowledge area.

When considering the ways in which SE undertakings differ from projects in other
fields, it becomes apparent why many common project planning applications have in-
sufficient functionality to plan for SE projects. There is a need for these tools to pro-
vide additional specialised functions aimed at the peculiarities of software projects.

Apart from project attributes described in the previous subsection, SE project planning
applications need to consider further information concerning e.g. human resources.
This can include experience and skills of individuals as well as contingency planning
for shortfall during potential times of sickness. While the former factor may enable the
project manager to include periods of training in the plan, the latter factor can help to
improve the precision for simulation of possible project scenarios and outcomes.

Apart from the option of playing around with certain variables, most generic planning
tools do not provide the user with an option to run sophisticated simulations on possi-
ble project scenarios. This functionality would be very useful and could be realised e.g.
in a sandbox environment: simulations would have no impact on the “real” project
plan.

With the provision of virtually no guidance, the usage of common planning applica-
tions for software engineering requires a tremendous amount of experience from the
project manager if the project is to meet schedule and budget constraints. However,
even if the person in charge has many years of experience in the field, two significant
problems still remain:

1. The larger the project, the less precise and reliable estimations become if there
are no sophisticated planning tools to support the expert in his or her decision
making process.

2. Without supporting project plans, certain decisions may be hard to communi-
cate to other corporate departments such as business management and finance.

3.6 General Project Planning and Management Concepts

3.6.1 PRINCE2 vs PMBOK

PRINCE2 (Projects IN Controlled Environments) “(...) is described as a structured
method for effective project management for all types of project [sic], not just for in-
formation systems (...)” (Wideman 2002, p. 1). Furthermore, it constitutes “(...) a
widely recognized de facto standard used extensively by the UK government and in the
private sector. (...)” (PRINCE2 (n.d.) cited in Wideman 2002, p. 1).
Wideman (2002) compares PRINCE2 with the Guide to the Project Management Body

51

3 – Planning for Successful Commercial Software Engineering Projects

of Knowledge (PMBOK), which is publicised by the Project Management Institute and
can be generically applied to a wide range of projects. He concludes that both PM con-
cepts serve different purposes, which inhibits direct comparison. However, Wideman
(2002) reasons that the PMBOK guide covers more ground than PRINCE2 and is more
suitable for teaching the subject, rather than using it as guidance for projects. “Never-
theless, within its self-prescribed limitations, PRINCE2 provides a robust easy-to-
follow methodology for running most projects, that is, where the objectives are clear
and the deliverables are either well described, or capable of being so” (Wideman 2002,
pp 8-9).
The statement above can result in the problematic that, especially in the field of com-
mercial SE projects, objectives (i.e. requirements) are not always clear and can often
become subject to clarification due to potential ambiguousness. Wideman (2002, p. 9)
identifies a similar issue with regard to projects in general: “Considering that it is in the
conception and definition phases that the most critical project decisions are made, it is
surprising that more focus is not given to this part of the project life cycle both by the
[PMBOK] Guide and PRINCE2”.

3.6.2 Six Sigma and COBIT

Six Sigma is a measurement of quality and can help to improve the accuracy of certain
SE processes. Tayntor (2007, p. 12) states that despite “(...) Six Sigma has its basis in
statistical analysis, (...) both the tools and the techniques can increase the probability of
successful system development by ensuring that the ‘three rights’ are in place”

1. The right people are involved.

2. The right problem is solved.

3. The right method is employed.

“Control Objectives for Information and related Technology (COBIT) is a comprehen-
sive set of resources that contains all the information organisations need to adopt an IT
governance and control framework” (IT Governance Institute 2007, p. 9). Also, it can
help to “(...) optimise IT-enabled investments and ensure that IT is successful in deliv-
ering against business requirements” (IT Governance Institute 2007, p. 9).

3.7 Conclusion

The statements in this chapter made by Brooks were published for the first time in
1975. Since then, these ideas have not consistently found their way into widely ac-
knowledged understanding of modern SE project planning.

COCOMO II provides a sophisticated tool for cost estimation through a high level of
detail. In the case of COCOMO II however, sophistication resulted in complex usabil-
ity. As a result, for some companies the model may be too complicated to be consid-
ered as a viable alternative to less precise, but more simple cost estimation models. In
some cases, the models that are used may rely almost entirely on the experience of the

52

3 – Planning for Successful Commercial Software Engineering Projects

expert. When using a simpler model however, the estimations can sometimes be easier
to communicate and justify to internal business departments and to the customer.

As cited in 2.4.2, progress in the SE discipline is likely to come from building increas-
ingly simple systems and by reducing inherent complexity. This might apply to project
planning methods and tools as well. However one should not confuse simplicity with
lack of completeness: generic tools may be far from appropriate for SE projects as
shown in this chapter.

In conclusion, project planning and management applications need to consider the very
nature of software projects if they are to be used for this purpose. This can be realised
through tools which are rather sophisticated and take into account certain factors of SE
projects, but at the same time provide the user with intelligent guidance and an inter-
face that is easy to use and to understand. As elicited in the preceding literature review
chapter, implicit corporate business factors (see 2.9.3) may need to be addressed during
planning stages of SE projects.

53

4 – Implicit Corporate Business Factors

Chapter Four

The importance of taking into account the nature of software projects when planning
for SE is emphasised in the previous chapter. Also, the problematic of generic project
planning applications and indications of which factors may need to be considered is
explained in chapter three.

4 Implicit Corporate Business Factors

4.1 Introduction

Subsequent sections investigate implicit corporate business factors relevant to com-
mercial SE projects. This analysis has the purpose of shedding light on the degree of
influence that these factors can exert on the successful outcome of commercial soft-
ware projects. The chapter closes with a conclusion describing how consideration of
the identified factors could improve the quality of commercial SE projects. Further-
more, the conclusion indicates a potential solution on how to implement this considera-
tion within companies.
The knowledge which is built up in this chapter forms the foundation for a framework
to plan for high quality commercial software engineering projects.

Johnson et al 2008 describe the PESTEL (Political, Economic, Social, Technological,
Environmental and Legal factors) framework, which can be used to analyse the macro-
environments of organisations. A similar concept is employed in this chapter to analyse
implicit corporate business factors of software companies.

54

4 – Implicit Corporate Business Factors

Figure 18 – Implicit Corporate Business Factors (ICBF)

4.2 Factor 1: Conflicting Corporate Objectives

Large companies often consist of many different departments such as marketing, sales,
procurement, operation, logistics and distribution. Analysis of corporate objectives in
this section however is focused on departments which are potentially relevant to soft-
ware companies. Furthermore, the analysis predominantly investigates departments
which might have the ability to exert vital influence on SE projects. The decision on
which departments to analyse is not only inspired by findings from the literature review
(particularly sections 2.6, 2.8.2 and 2.8.3), but also based upon the experience of the
author in commercial SE projects.

4.2.1 Objectives of Corporate Finance and Senior Management

In their book “Corporate Finance – Principles & Practice”, Watson and Head (2007,
p.8) describe corporate objectives as follows:

(...) employees, customers, creditors and the local community, will
have different views on what the company should aim for. It is impor-
tant to stress that while companies must consider the views of stake-

55

4 – Implicit Corporate Business Factors

holders other than shareholders, and while companies may adopt one
or several substitute objectives over shorter periods, from a corpo-
rate finance perspective such objectives should be pursued only in
support of the overriding long-term objective of maximising share-
holder wealth.

Despite Watson and Head (2007) mention non-financial corporate objectives (survival
and social responsibility), their discussion of these alternative goals is aimed at maxi-
misation of shareholder wealth and corporate sales figures. Damodaran (2001) raises
the question which circumstances would trigger the need for a firm to have share price
maximisation as its only objective. He introduces a list of assumptions and concludes
that if these proposed assumptions would hold true for a company, then maximisation
of shareholder value would be appropriate as its only objective. An example for such
an assumption is that maximising shareholder wealth becomes the primary objective
for the managers of the firm as well (Damodaran 2001). With regard to the objectives
of managers, Byars (1997, p. 10) provides a more neutral description, stating that “A
professional manager performs the basic management functions for the ongoing or-
ganization”. As management is a significant factor on its own, a more thorough inves-
tigation of this topic is provided in section 4.4.

Hence, from a corporate finance point of view and from the perspective of senior man-
agement positions, the main objective of a firm might be the creation- and increase of
value for its owners.

4.2.2 Objectives of Software Engineering

On the contrary to the statements shown above, Glass (1998, p. 11) describes his view
as follows: “Software personnel are motivated by things such as challenging projects
and/or a chance to use new technology rather than the more traditional ones of power
or money” (!)

Some of the aims of other engineering disciplines might as well be applied to the SE
discipline: according to Grimson and Kugler (2000, p. 542), “(...) engineering is con-
cerned with creating cost-effective solutions to practical problems by applying scien-
tific knowledge to building ‘things’ – or systems – in the service of mankind”.
The term service of mankind however can lead to conflicting interests. Many corpora-
tions are run- and owned by people who strive to increase the return on investment
(ROI) of their venture, as shown in the preceding subsection. “Serving mankind” could
have been the primary intention of the respective founder of the company in the first
place, but over time and with changing executive staff, this overall corporate goal can
get diluted.

In the experience of the author, most software-engineers aim at producing and deliver-
ing high quality software products to the customer and may see this as a reasonable
main objective for an organisation which produces software.

56

4 – Implicit Corporate Business Factors

4.2.3 Objectives of Human Resource Management

For human resource departments, a central goal must be the well-being of the human
workforce of an enterprise. From a Human Resource Management (HRM) point of
view, Currie (2006, p. 7) states that “The main purposes of all organisations are to sur-
vive and develop”. In addition, he argues that organisations are necessary for the infra-
structure of modern civilised societies to exist, satisfying the needs of people (e.g.
food, shelter, luxury goods etc.). Furthermore, he explains that companies help to han-
dle life situations such as education, health or marriage including birth and death.
“Since we are aware of our survival needs of the future, we create organisations to en-
sure that those needs will be met” (Currie 2006, p. 3).
Armstrong (1992) identifies people as the most important assets of organisations. In
addition, he is of the opinion that effective people management is the key to organisa-
tional success.

The views presented above clearly contradict statements concerning objectives of other
departments. Also, they are an indication that some HRM departments may assume
they are compelled to impose their own objectives upon the entire corporation.

4.2.4 Objectives of Legal and Marketing Departments

Legal departments of software companies need to take into account a certain range of
legislative aspects. Beside other areas, the law which needs to be covered comprises

• Intellectual property (copyright, patents and trademarks)

• Computer-, electronic contracts and torts

• Criminal law

• Data protection law

• Professional, social and ethical aspects of Information and Communication
Technologies (ICT).

(Bainbridge 2008)

Further areas can include the law of negligence in case a software contract needs to ad-
dress liability for defects and e.g. the status of electronic documents as evidence in
criminal trials concerning computer crimes (Bainbridge 2008). With regard to software
development, Bainbridge (2008) points out that when drawing up acquisition contracts
for computer hardware or software, lawyers as well as computer professionals have to
consider the legal implications associated with the technology.

Hence, one of the main objectives of legal departments may be to insure that the corpo-
ration complies with the law. Bainbridge (2008) describes the importance of organisa-
tions to develop policies concerning the use of computer technology: “(...) systems of
auditing should be drawn up to check for unauthorised software, to check for computer
viruses and fraud, and to verify that the use of personal data is lawful and in accor-

57

4 – Implicit Corporate Business Factors

dance with data protection law” (Bainbridge 2008, p. 4). As a result, other departments
might find themselves having to adhere to some or all of the suggested legal policies in
a more or less strict manner. This in turn could shift the perception of corporate objec-
tives away from goals related to the software profession towards policy compliance.

Marketing departments may demand the development of innovative products to be able
to run advertisements, campaigns or promotions. This could be aimed at a specific
product or at the organisation as a whole (e.g. for branding purposes).

4.2.5 Conflicting Objectives: Potential Impact on SE Projects

The discussion of the purpose of organisations leads to differing viewpoints, which al-
most inevitably causes inconsistency in goals among corporate departments. “Many of
the disagreements between corporate financial theorists and others (...) can be traced to
fundamentally different views about the correct objective for the firm” (Damodaran
2001, p. 8).

4.2.5.1 Corporate finance and senior management
Managerial decisions which are based solely on short-term generation of shareholder
value can have negative effects on high quality software projects. The author has ex-
perienced a project where insufficient time was granted to developers for training in a
new technology for a particular project. Also, modifications of SE project plans were
used for the purpose of vastly increasing business value over a short period of time.
The result of these business-deal driven measures was that a project of major impor-
tance to the software company was brought to the verge of failure. In this case, the
problematic situation of differing internal goals becomes obvious.

In some cases, customers may exert unjustified and exaggerated pressure on senior
management, which can lead to uninformed decisions and thus to motivational issues
with employees. The reason may be that inexperienced managers abide the attitude
“the customer is always right” within the organisation even if the customer is not pre-
sent. If the customer was wrong in the assessment of the project situation, then techni-
cal employees may feel neglected by their leading managers. Therefore, it can be diffi-
cult for management to provide superior customer service while making unbiased
judgements about the real status of the project.

4.2.5.2 Software engineering
As shown in 2.8.2, overly optimistic time and budget planning may be a major reason
for delays in software projects. Sometimes it can be the case that senior management
pushes for more workload to be done in a reduced amount of time. Technical people
could be tempted to provide plans which are too optimistic as they may want to avoid
potentially prolonged discussions with superiors in some cases.
However, the opposite could be the case as well: technical employees could be tempted
to avoid the situation of being held responsible for time estimations that may turn out
to be too short. Therefore the estimation could be too pessimistic and thus costly. One

58

4 – Implicit Corporate Business Factors

further factor which can increase costs could be that some developers might feel com-
pelled to innovate with no regard to the importance of the product. Much time can be
wasted on compulsive perfectionism when applied to products which are relatively un-
important to the strategy of the software company or its customers.

4.2.5.3 Human resource management
HRM has similar potential to exert vital influence on other departments as this is the
case with corporate finance, top-level management and software engineers: “The cor-
porate culture and the values, organisational climate and managerial behaviour emanat-
ing from that culture will exert a major influence on the achievement of excellence”
(Armstrong 1992, p. 18). Uninformed interventions by HRM could harm a project or
the entire company. In some extreme situations where a project is on the verge of fail-
ure, people might need to “pull it off” with working hours exceeding normal standards.
HRM should be flexible and intervene with the project plan only if working conditions
tend to get out of control for a prolonged period of time14 in order to preserve the well-
being of the employees.

4.2.5.4 Legal and marketing departments
Partial- or even full adaption of compliance rules imposed by the legal department can
have counterproductive effects on SE projects, as these rules could negatively impact
the morale of the workforce. Without question, legal rules are important to adhere to,
but they entail the danger of introducing too much bureaucracy throughout the organi-
sation. Software engineering is partially a creative process, which means exaggerated
compliance rules can put developers at unease (see figure 19). This in turn could con-
strain the motivation, dedication and inventiveness of experts in the long run – a situa-
tion which can be worsened if experts begin to develop an exaggerated fear of breaking
the law, even if it might be unjustified in many cases of day-to-day operations.

14 The author has made the experience that friendship and loyalty among team members can become
stronger during extreme project situations, which however should not be used as an excuse as such situa-
tions should remain a last resort to save the project from failure.

59

4 – Implicit Corporate Business Factors

Figure 19 – Adaptive tensions (Johnson et al 2008, p. 40)

Thus, compliance rules may need to accommodate the attributes of the respective en-
terprise; at least in the approach of legal departments when conveying these policies.
Tunkel and York (2000) make the point that technology is developing ahead of the law,
which poses a further challenge to legislative compliance rules.

Marketing departments may require innovative products to efficiently build or enhance
the brand of the software company. These demands in turn can exert pressure on busi-
ness and technical departments to sell and implement marketable functionality which
may not be needed by the customers.

It needs to be emphasised at this point that each corporate department even has to pur-
sue its own and unique goals in order to fulfil its ultimate purpose. However, it appears
that sometimes the line gets blurred which separates the goals and aim for the company
as a whole from the objectives of individual departments. This in turn can result in a
dangerous situation as departments and business units could increasingly act in their
own interest – an issue which is presumably more significant for large organisations,
because bigger departments could strengthen the feeling of autonomy with employees.

4.2.6 Consolidation of Findings

The deviation of internal goals may sometimes even be apparent to employees and
could unfortunately be attributed to a company as being part of normal circumstances,
but it poses a serious issue which needs to be addressed: in order for a company to out-
pace competitors, its individual departments have to work in collaboration. If this is not
the case, then decisions which are based on the objectives of only one department may
have unforeseen effects on other departments across-the-board. The process of soft-
ware engineering, which is already highly susceptible to disruption due to its complex-
ity, might be exposed to unforeseen impacts, inevitably leading to higher risk. Hence,

60

4 – Implicit Corporate Business Factors

conflicting internal corporate objectives can make the SE process more likely to fail.
Reconciliation of differing internal corporate objectives is discussed in subsection 4.6.1
as consideration might form the basis for productive collaboration.

4.3 Factor 2: Corporate Strategies

There is a wide variety of strategies for organisations. In order to provide a relevant
scope, this section is focused on major strategic concepts with the potential of exerting
strong impact on commercial SE projects.

4.3.1 Industry Forces and Generic Strategies

Porter (1980) describes five competitive forces influencing the competitive state of a
company within any industry. For example, two of the forces are rivalry among exist-
ing firms in the industry and bargaining power of suppliers. Porter (1980) outlines
three generic strategies which can help an organisation to cope with these forces:

1. Overall cost leadership (e.g. aiming to be the cheapest provider of goods)

2. Differentiation (for example, providing products of exceptional high quality)

3. Focus (e.g. on niche markets and particular customer segments)

(Porter 1980)

Strategic decisions which are made to counter competitive forces originating from the
industry may have a significant impact on commercial SE projects. The situation can
be exemplified as follows:
if a company decides to pursue the strategy of cost leadership in order to outpace a cer-
tain competitor, expenses might need to be reduced as much as possible in order to be
successful with this strategy. This in turn can result in management demanding from
project plans to emphasise rapid implementation of core functionality as well as re-
duced testing time in order to roll out the system as fast as possible. In this scenario,
software engineers could be forced to plan against their motivation of producing high
quality.

Therefore, if the strategy of the company is not communicated from the business de-
partment to the technical employees in a sound manner, mutual misconceptions con-
cerning the end product may occur with high certainty.

4.3.2 Portfolio Matrices: The Growth/Share matrix

The growth/share matrix (also denoted as the Boston Consulting Group (BCG) matrix)
can be helpful in managing the product portfolio of an organisation.

61

4 – Implicit Corporate Business Factors

Figure 20 – The growth/share (or BCG) matrix (Johnson et al 2008, p. 279)

Some products in the portfolio with high market share and high market growth (so-
called Stars), for example, can represent attractive investments. “However, the BCG
matrix also warns that high growth demands heavy investment, for instance to expand
capacity or develop brands” (Johnson et al 2008, p. 278). Hence, there is a need for
balance within the portfolio: because some products could possess low growth rates,
the need for investment might be often lessened. Cash cows can serve as an example
for this type of product: due to its capability to provide relatively constant amounts of
cash-flow, this type of product can help to fund promising new undertakings that are
e.g. Question marks. The resulting investments in turn could aid in turning them into
Stars. (Johnson et al 2008). Dogs on the other hand “(...) may be a cash drain and use
up a disproportionate amount of company time and resources. The BCG usually rec-
ommends disinvestment or closure” (Johnson et al 2008, p. 279).

Johnson et al (2008) describe a problem with the BCG matrix which is highly intrigu-
ing from a commercial SE point of view: The internal treatment of projects which are
categorised as cash cows and dogs “(...) can cause motivation problems, as managers in
these units see little point in working hard for the sake of other businesses [i.e. stars].
There is also the danger of the self-fulfilling prophecy. Cash cows will become dogs
even more quickly than the model expects if they are simply milked and denied ade-
quate investment” (Johnson et al 2008, p. 280).
Strategic planning for software companies might face worse obstacles: software pro-
jects which are designated cash cows could not only cause motivational problems with
managers of these undertakings, but with software developers as well: the utilisation of
individual products in the implementation of corporate strategic moves may be much
more difficult to communicate to technical people as e.g. software engineers, analysts
and developers than to individual project managers, because the interference in the
work of developing software is much more noticeable. Therefore, the impact of prod-

62

4 – Implicit Corporate Business Factors

uct portfolio management on SE projects might be much more significant than this is
the case with generic strategies described above.

4.3.3 Competitive Advantage through the use of Information Technology

It has to be noted that concepts for generating competitive advantage through the use of
computerised information systems sometimes fail to address and emphasise the prob-
lematic described above. The reason for this is simple: in the case of strategic use of
information systems, the corporate strategy is being aligned to opportunities enabled by
IT and not vice versa.
However, the concept of utilising IT to enhance corporate strategy shares problems of
similar nature with the concept of imposing strategy on software projects: both ideas
can create resistance which in turn can be damaging to an organisation: Hammer
(1990, p. 112) describes problems when using computers to redesign existing business
processes: “No one in an organisation wants reengineering. It is confusing and disrup-
tive and affects everything people have grown accustomed to”. These issues can be
compared with the potential lack of communication and acceptance when exploiting
commercial SE projects to pursue corporate strategies.

4.4 Factor 3: Management

4.4.1 Managerial Skills

Corporate leaders (e.g. senior managers) as well as middle- and supervisory manage-
ment of organisations can have enormous influence on the successful outcome of SE
projects. Talented managers are important when conducting the project in a manner
which allows software developers to be creative on the one hand, but keep a certain
discipline in order to meet financial goals on the other hand. It can be helpful if corpo-
rate leaders of software companies have a certain amount of technical experience or
knowledge background. “In practice, management skills are so closely interrelated that
it is difficult to determine where one begins and another ends. However, it is generally
agreed that supervisory management needs more technical skills than managers at
higher level. (...) conceptual skills become increasingly important as a person moves up
the managerial hierarchy” (Byars 1997, p. 9).

63

4 – Implicit Corporate Business Factors

Figure 21– Relative amount of emphasis placed on each function of management

(Byars 1997, p. 10)

The previous statement unfortunately does not emphasise that people do not always
start their careers at a technical level before they get promoted into management posi-
tions. Therefore, it is possible that employees with strong business background, who
may have never worked in the field of e.g. programming before, become managers of
SE teams. This in turn can create situations where decisions are being made without
careful consideration of software engineering principles.

4.4.2 Potential Correlation between Project Types and Degree of Managerial
Interference

It is intriguing to note that interference of management with commercial SE projects
might be stronger as opposed to scientific or internal R&D undertakings. The reason
could be that additional effort to maintain high quality standards seems to be harder to
justify for practitioners of commercial SE ventures than this is the case with science
projects: whereas the purpose of research to a great extent is often an end in itself, the
drive behind commercial SE projects may be profit (views on what the ultimate pur-
pose really is can greatly vary as shown in 4.2). In addition, software for scientific un-
dertakings is often just part of a larger project that may consist of infrastructure such as
machines and research facilities as it is the case with CERN15. The value of the soft-
ware becomes more visible as the machinery in many cases cannot operate without it.

Managerial interference could also be less severe during projects for the development
of engineering-like systems such as real-time software. Real-time software is often de-
veloped simultaneously with hardware components, which could trigger the need to
approach the project in an engineering fashion. In this situation, it may be less likely
that high-level business management is to interfere with estimations and deadlines dur-
ing planning stages, because impacts on the quality of the end-product tend to become

15 For an example of software being part of a large scientific research project, see Stewart et al (2007).

64

4 – Implicit Corporate Business Factors

more visible. This partly confirms findings of the literature review, in which invisibil-
ity has been identified as one of the major difficulties faced by the SE discipline (see
2.4.2).
Another potential reason why real-time software development might cause business-
oriented managers to make rather prudential decisions could be the underlying value of
other system parts: real-time projects may be accompanied by the production of actual
hardware components such as chips and cables. The monetary value of these materials
is – unlike software – touchable and therefore more visible, too. As is the case with re-
search projects stated above, software development then becomes just a part of a larger
undertaking.

The important thing to understand is that the value of the hardware components is im-
plicitly projected onto the software. In other words, the hardware would be rendered
useless without the software in many cases, just like the machines for scientific pur-
poses described above.

4.5 Factor 4: Human Beings

Dynamics within and among development teams can play an important role during
software projects. However, this section is focused on a general analysis of human be-
ings as a factor influencing SE projects.

4.5.1 The “People” – Factor

Parnas (in Fraser et al 2007, p. 1030) states that “The only solution to the never-ending
software “crisis” is to try to emulate the science-based, disciplined, document based,
development we see in good engineering projects”.
Considering results of the research until this point, the author strongly disagrees with
this view. Evidence which points towards consideration as being crucial to achieve
successful SE projects rather than blindly adapting engineering principles can also be
found in recent newspapers:
Elton (2008, p. 2) provides examples of projects where acceptance by people seems to
have been a crucial factor to success: He concludes that “These lessons apply to just
about every IT project I have worked on – changing the way people work, not just the
technology, has to be at the core”. In addition, he notes that “No amount of technology
will overcome resistance to something people don’t want. Attitudes to IT projects are
far from being a ‘right brain’ rational calculation. Success is often about emotion – the
‘left brain’ instinctive reaction”. Thus, if compelling emotional cases are being made,
solving technical problems is just a matter of getting work done. “(...) Do it the other
way round and solutions are elusive” (Elton 2008, p. 2).

With regard to high-pressure projects and unrealistic schedules imposed on software
engineers by higher management, Yourdon (2004, p. 79) makes the following state-
ment: “(...) I suggested that if the project manager can’t persuade the customer or sen-
ior management to share some of the uncertainty associated with the schedule or

65

4 – Implicit Corporate Business Factors

budget of a death march project16, he should seriously consider resigning from the as-
signment; the same goes for technical members of the project team”. On the one hand,
Yourdon (2004) concedes that in the worst case scenario, such a move can imply the
problematic of having to look for a new job. On the other hand he argues that it might
be a rational and self-protecting move for the employee to recognise that he or she may
not be able to bear working conditions which could negatively impact health and pro-
ductivity in the long run.
Subliminal discontent can become a dangerous threat to SE projects and possibly to the
entire company (predominantly for SME).

4.5.2 Invisibility and Mutual Reliance among People

The problematic of invisibility is pointed out in the previous section as well as the lit-
erature review: the argument made in 2.4.2 implies that it is difficult to represent soft-
ware in a geometrical manner. Unfortunately, this may apply to the planning of soft-
ware projects, too. There might be a strong and intriguing link between visibility of the
end-product and importance of the people-factor in the successful outcome of SE pro-
jects.

The less “visible” and comprehensible plans of products or projects are, the
stronger people seem to rely upon one another. This in turn could cause the peo-
ple-factor to become increasingly important and could be the reason why many
IT-projects still get delayed or fail as shown in section 2.4.

4.5.3 Project-Specific Information

The following attributes have been introduced in the previous chapter and need to be
included in the factor concerning human beings. Albeit not all of these matters can be
denoted as “implicit” factors, they often could be ignored or forgotten in SE project
planning in spite of their potential importance. Thus, these attributes are suitable to be
included with ICBF:

• Potential shortfall in human resources due to e.g. sickness or training/re-
training

• Experience and proficiency in the particular knowledge domain (i.e. whether
the individual requires training for the respective knowledge field in which the
software may operate).

• Technical experience (e.g. project-specific programming skills).

• General necessity for external competence such as consultants or other 3rd party
knowledge input.

16 Death march project refers to a project “(...) for which an unbiased, objective risk assessment (...) de-
termines that the likelihood of failure is ≥ 50 percent” (Yourdon 2004, p. 3).

66

4 – Implicit Corporate Business Factors

• Potential degree of required intercommunication among team members and ex-
perts.

4.6 Conclusion: Consideration in Planning

The best software process model can be rendered useless if the corporate situation
accommodating the SE project is counterproductive.

4.6.1 Consideration

When taking into account the findings of this chapter, one potential solution emerges:
consideration.

• Internal consideration: departments would need to increase communication
among one another, in order to facilitate their awareness of what objectives, re-
quirements and aims neighbouring departments may have. Internal considera-
tion means reconciliation of different internal corporate objectives.

This includes the consideration for the individual professions within departments of a
corporation: as shown in the literature review chapter, the software engineering disci-
pline still seems to be struggling with terminology. The word engineering may have
led to confusion on how to conduct software development. Consideration of these is-
sues not only for SE, but for all knowledge areas of associated major departments
might be crucial. Thus, departments need to consider the peculiarities of the profes-
sions of other departments they work with.

• External consideration: the objectives, requirements and needs of individual
customers could be taken into account when forming corporate philosophies
and strategies. Consideration for the customer can be seen as part of the first
factor described above, as different departments may have a different under-
standing on what is best for the customer.

67

4 – Implicit Corporate Business Factors

Figure 22 – Potential outcome of improved mutual consideration within a company

A case described by Elton (2008) can serve as an example of the positive influence of
consideration: resistance was overcome by delegating responsibility of an IT project to
business departments. “The effect was remarkable. (...) Previously insurmountable bar-
riers become challenges to resolve. (...) Of course, IT was a big part of this project, but
people played a bigger part” (Elton 2008, p. 2).

However, consideration is not simple to achieve as it creates additional workload and
poses the danger of accumulating unnecessary overhead if implemented in the wrong
way. For example, meetings to facilitate consideration could result in unproductive
gatherings. In the worst case, these meetings may end up with mutual accusations re-
garding which departments are more inconsiderate than others (which ironically in it-
self is the opposite of a considerate attitude). How then, could the factors described in
this chapter be addressed in order to improve the quality of commercial software engi-
neering projects?

4.6.2 Integration of Factors into Project Planning

One might argue that it cannot be demanded from software engineering to burden the
responsibility of handling the factors mentioned in this chapter, as they simply reside
outside the domain of software engineers.
However, if these do not get addressed, then nothing will change and it is unlikely that
business departments and senior management will take the initiative to improve the
situation with difficulties in commercial SE projects. The reason is that, from the view-

68

4 – Implicit Corporate Business Factors

point of other departments, these factors might not be the cause of these difficulties as
shown in this chapter. Rather insufficient technical project planning models and skills
might be identified as a reason for schedule overruns.

The solution may be as follows: instead of directly addressing conflicting corporate
objectives, managerial influence and the peculiarities of human interaction, these fac-
tors could be integrated into software engineering project plans and thus be addressed
indirectly.
If consideration is implemented in an organisation this way, the likelihood of resistance
from non-technical departments might be significantly less as opposed to actively at-
tempting a corporate transformation. One could denote this as a “soft revolution”.

The author has made the experience in the industry that the planning stage of a soft-
ware project has the characteristic that consensus can often be reached faster than dur-
ing any other stage of the project. Emotional reactions during discussions may occur
with less severity as usually stakeholders have not invested significant amounts of
time, money or effort into the project at this stage.

4.6.3 The Potential Link: Corporate Strategies

Why is consideration (and integration) of corporate strategies important when planning
for commercial SE projects?
The answer is that corporate strategies might be able to serve as a link among ICBF
which includes software engineering principles, because the strategy of the corpora-
tion may be something all departments, managers and employees can identify with.
After all, strategies need to be understood and promoted by managers anyway in order
to be implemented successfully.

Figure 23 – The potential link to reconcile ICBF and the discipline of software engineering

69

4 – Implicit Corporate Business Factors

In conclusion, SE project planning in alignment with corporate strategies may signifi-
cantly increase the quality of commercial SE projects.

With regard to evaluating the intrinsic value of businesses, the U.S.-billionaire and in-
vestor Warren Buffett (1983) wrote these lines in his letter to shareholders of Berkshire
Hathaway Inc.: “(...) managers and investors alike must understand that accounting
numbers are the beginning, not the end, of business valuation”.

Similarly, software engineers and managers alike must understand that SE models and
generic project planning tools may be the beginning, not the end of successful com-
mercial software engineering projects.

70

5 – Planning for High Quality in Commercial SE Projects

Chapter Five

The preceding research chapter elicits Implicit Corporate Business Factors. These fac-
tors can exert significant influence on commercial software engineering projects and
may in some situations be crucial to project success.

5 Planning for High Quality in Commercial SE Projects

5.1 Research Input and Overview

Some existing generic project planning tools comprise an immense amount of func-
tionality. However, these tools may not sufficiently and accurately address the difficul-
ties one encounters when planning for software projects. The key to high quality in
commercial SE projects may be planning frameworks which not only consider the pe-
culiarities of the discipline, but also align with strategic objectives and the business
culture of the respective software company.
Furthermore, instead of solely using generic project planning tools as e.g. MS Project
in conjunction with development tools such as Trac or Bugzilla, intelligent software
which is specialised to plan for software engineering projects, might be indispensible to
produce more accurate project plans resulting in projects of higher quality.

Intelligent planning software could also provide more clarity for the software project
plan. This in turn may allow either corporate department to justify its respective view-
point in a “visible” manner, underpinned by sound arguments. Also, it can help a de-
partment to recognise the potential inappropriateness of its own viewpoints before they
are being discussed in time-consuming, “expensive” meetings. As it is the case with the
framework, the intelligent planning software may be aligned with (and thus individu-
ally configured for) the particular software organisation it is used by.

This chapter utilises the knowledge from the research conducted in the preceding chap-
ters and transforms the findings into practical artefacts. The following sections empha-
sise the importance of high quality in software projects, as planning for quality forms
the basis of the planning framework for commercial SE projects. In addition to the
framework, this chapter describes the software prototype for a project planning appli-
cation. The functionality of the prototype is based on the framework and can support
the user in planning for commercial SE projects.

5.2 Research Approach

The framework was created utilising findings of the preceding research chapters in-
cluding secondary research conducted in the literature review. Therefore, even though
it constitutes a theoretical construct, the framework possesses high practical relevance:

71

5 – Planning for High Quality in Commercial SE Projects

input from some literature provides invaluable practical background knowledge about
the IT industry. In addition, hands-on experience of the author in several commercial
software projects strongly influenced the creation of the commercial software engineer-
ing planning framework.

Development of the framework was accompanied by implementation work for the
software prototype IntelliPlan. Even though conceptual ideas predominantly originated
from building the framework, concurrent programming work was useful in that it
helped to evaluate not only technical feasibility, but also whether the theoretical con-
cepts would make sense when integrated into project planning software.

5.3 Planning for Quality

5.3.1 Existing Definitions of High Quality Software

Tian (2005, p. 26) states that he adopts “(...) the correctness-centered view of quality,
that is, high quality means none or few problems of limited damage to customers.
These problems are encountered by software users and caused by internal software de-
fects”. Khan et al (2006) provide a rather detailed discussion on what constitutes qual-
ity as a concept not only for software but also from a general perspective. They state
that “Quality is achieved to the extent that a project and product meets the client’s
needs and expectations” (Khan et al 2006, p. 3). With regard to a general definition of
quality, Khan et al (2006, p. 4) come to the conclusion that “Quality has received dif-
ferent definitions (...) all related to client satisfaction. (...) the definition and meaning of
quality is different with respect to different perspectives and there is no uniform, con-
sistent and universally accepted definition (...)”.

Taking into consideration the findings above as well as the experience of the author in
the software industry, the degree of quality often seems to be measured by determining
customer satisfaction due to requirements fulfilment.

Emam (2005, p. 14) uses defects as a measure of software quality: “The more defects,
the lower the quality”. Measuring quality in this way seems to be suitable especially in
case the development is not yet finished, as it can be determined whether the software
may meet the requirements of the client in terms of e.g. reliability.

5.3.2 A New Definition for High Quality in Software

It is difficult to estimate in advance which parts of the program might be prone to have
errors. Therefore, planning for errors is problematic from a planning perspective. In
addition, realistic planning for errors implies that one would have to be pessimistic and
negative about the project before it has even commenced. This in turn can lead to
overly optimistic (in terms of time, resources and budget) project planning, because
only few people may be honest about how many errors could get introduced during de-
velopment when creating project plans: usually no one wants to depreciate him- or her-
self at the planning stages of a software project.

72

5 – Planning for High Quality in Commercial SE Projects

But how can one plan for high quality in a project without criteria which may have a
negative notion but ultimately enable measurement and validation? The answer could
lie within the very definition of high quality in software engineering: it may need to be
changed. With many definitions and descriptions of the word quality available as
shown in the previous subsection, the author believes that quality of an object can be
measured through the amount of consideration which influenced its creation.

High quality in commercial software engineering projects (and therefore in soft-
ware as a product) may be the degree of unconditional mutual consideration, that
is compassion, among human beings who participate in the project. If this crite-
rion is met then other factors might fall in place without the need for explicit
problem solving.

This might require effort from the software engineer in that he or she has to become
more compassionate, tolerant and empathetic. This additional effort however can pay
off vastly because it could result in something positive: enthusiasm. The author also
believes there is no better way of delivering quality to the customer than enthusiastic
employees, who work hand in hand to achieve this goal; no matter which department
they work in.

As indicated in subsection 4.6.2, this consideration, which may lead to projects of
higher quality, could be integrated into project planning. Imposing “consideration poli-
cies” upon the employees of the software company would almost certainly result in re-
sistance and a negative situation, because people would not truly mean what they say:
this type of consideration would only be a farce, as real consideration might require
people to be compassionate when interacting with their colleagues – including the ones
they may not be able to abide.
For companies structured in a way that key software engineers are not members of sen-
ior management, the only option for software engineers to induce change of organisa-
tional culture favourable to commercial SE projects may be at a technical level:
through project planning.

It needs to be emphasised that the initiative might have to come from software engi-
neers (as described in subsection 4.6.2), because from the perspective of other depart-
ments, issues with SE projects may stem from problems on a technical level such as
software development models, while ignoring that issues could in fact and to a large
extent originate from ICBF.
Integration of ICBF into planning might solve the question stated above as it could be
way of planning for high quality without measuring against factors bearing a negative
and potentially discouraging notion such as errors and failure.

Hence, the author is of the opinion that quality can be planned in advance through in-
tegration of ICBF into the project plan.

73

5 – Planning for High Quality in Commercial SE Projects

5.4 The Commercial Software Engineering Planning Framework

5.4.1 Overview

The framework consists of the following models and concepts:

• Description of solutions provided by the framework

• Stepwise Planning Model

• Generic Strategy Selection Tool

• Strategic Assessment Matrix

• Software Planning Forces Model

• Counterforce Decision Table

The following sections introduce and explain the concepts as well as their usage.

5.4.2 Solutions Provided by the Framework

These four essential difficulties with the software engineering discipline were elicited
and discussed in the preceding chapters:

1. Complexity

2. Invisibility

3. Changeability

4. Conformity

This framework addresses the difficulties 1-3 but excludes number 4: conformity might
predominantly have to be solved on the level of technical product implementation and
planning, rather than higher-level project planning. The four difficulties described
above may be sufficient to describe the essence of software. However, in planning for
SE projects one essential difficulty which might have not been considered as crucial
until date should be added: Lack of Completeness. This refers to the problematic, that
many generic project planning tools fail to accommodate software-specific attributes as
discussed in chapter 3.

74

5 – Planning for High Quality in Commercial SE Projects

Figure 24 – Solutions for the difficulties with commercial SE planning

Common Planning is essential to e.g. create timelines and allocate resources to tasks.
However, in this framework, common planning serves an additional administrative
role: common planning is used to quantify (additional) implicit project-specific infor-
mation and ICBF. Lack of Completeness and Issues with Changeability may be ad-
dressed efficiently through consideration of ICBF and collection of implicit project in-
formation. This might hold true because knowledge about implicit conditions can help
to mitigate forces that otherwise would be unknown. Invisibility in turn can be reduced
by visualising these previously unknown factors and by running simulations on scenar-
ios (supported by software) that include ICBF as well as implicit project conditions.
Complexity can be mitigated through separating information on ICBF from the indi-
vidual (common) project plan. Also, building up the project plan in a stepwise fashion
improves its soundness and hence makes it more comprehensible (this also applies to
views which can be realised in a supporting software planning tool: if required, only
“digestible” and understandable fractions of the entire project plan and its influencing
forces may be displayed to the user at once).

The explanations above intentionally provide a rather high level overview. Usage and
application of the framework is described in more detail in the following subsections.

5.4.3 Approaches for Optimal Usage of the Framework

5.4.3.1 Directional planning approach
The directional approach may be used in case the project planning has not commenced
or still resides in its early phases. For the directional approach, the Stepwise Planning
Model (5.4.4) can be used. This model resembles a tutorial. Some steps within the

75

5 – Planning for High Quality in Commercial SE Projects

model reference to further models, such as the Strategic Assessment Matrix (5.4.6) and
the Generic Strategy Selection Tool (5.4.5).

5.4.3.2 Problem-specific planning approach
The framework can also be used for the purpose of addressing specific or isolated
problems in existing, elaborated project plans or for projects which were already com-
menced. The Influential Forces Model (5.4.7) can help to identify certain problem ar-
eas. After detection of potential problem sources, the Counterforce Decision Table
(5.4.8) provides structured ways of focusing on a certain problem to solve it with high
efficiency.

5.4.4 Stepwise Planning Model

This model provides research information in a concise manner. Entries which have an
arrow in front encourage the respective usage of other models described in this chapter.

Figure 25 – Elicitation of implicit corporate business factors

76

5 – Planning for High Quality in Commercial SE Projects

Figure 26 – Elicitation of implicit project-specific factors which coincide with ICBF

“Contingencies” could also comprise potential issues with technical equipment. This
however may be categorised under planning for “Resource Requirements” as depicted
below in the section for estimation. Due to its technical nature, it should not be part of
ICBF.

77

5 – Planning for High Quality in Commercial SE Projects

Figure 27 – Elicitation of explicit project-specific factors through common project planning

78

5 – Planning for High Quality in Commercial SE Projects

Concerning the potential influence of stakeholders, the concept of Influence Maps
(MindTools 2009) may provide a suitable analysis model:

Figure 28 – General example for a stakeholder influence map (MindTools 2009)

Hence, influence maps may be an opportunity to determine the influence exerted by
individuals17 upon commercial software engineering planning.

The concept of running simulations mentioned in figure 27 refers to the possibility of
creating different project scenarios with respective approximated outcomes. For this to
be sufficiently accurate, simulations might have to be conducted with the support of
software project planning tools.

17 Forces which may emanate from interest groups (i.e. stakeholders) are depicted in subsection 5.4.7.

79

5 – Planning for High Quality in Commercial SE Projects

5.4.5 Generic Strategy Selection Tool

Figure 29 − Generic Strategy Selection Tool for software organisations;

the concept of generic corporate strategies was originally developed by Porter (1980)

The Generic Strategy Selection Tool can be helpful to clarify which generic strategy
the software company may have chosen to implement. In addition, it can be used to
make an educated guess about the strategic interests of the customer organisation. Be-
ing aware of fundamental strategic goals forms a vital basis for commercial SE plan-
ning, because it provides information on the question which projects or products may
fit a certain corporate strategy.

5.4.6 Strategic Assessment Matrix

Figure 30 – Strategic Assessment Matrix;

adapted from McFarlan (1984 cited in Ward and Peppard 2002)

80

5 – Planning for High Quality in Commercial SE Projects

The Strategic Assessment Matrix can be used to determine the relevance of a software
project from two vantage points:

• How important is the software product to the organisation of the customer?

• How important is the software project to the software company?

The “importance” can be measured through identifying in which ways the software
product would support the client company in pursuing its aim, objectives and generic
strategy (see previous subsection). Also, the software project could be important to the
software company in pursuing strategic goals: for example, the software may be reused
for further ventures or sold to a larger range of customers in the future and thus could
become increasingly relevant from a strategic point of view.
For efficient usage, targets could be placed on the grid to provide a starting point for
approximation of the respective percentage. This method may appear as being inaccu-
rate, but it might be sufficient to serve its purpose, which is a sound representation of
the potential of the commercial SE project or product.

5.4.7 Software Planning Forces Model

Figure 31 – Software Planning Forces Model18

18 Even though the Software Planning Forces Model is not directly adapted from existing concepts, the
idea for this model originates from the infamous concept by Porter (1980) to represent five forces of
industry competition.

81

5 – Planning for High Quality in Commercial SE Projects

The Software Planning Forces Model visualises the forces which potentially influence
commercial SE planning. Also, it provides some examples concerning individual ob-
jectives of the disciplines involved. The model does not require certain actions but can
be used as an awareness tool in case a conflict of interests among the individual de-
partments as well as the customer starts to occur. For example, the Software Planning
Forces Model can be used as a basis for discussing origins of the respective interest
conflict.

A radar chart might be a suitable way of visualising the approximated degree of influ-
ence caused by the different forces:

Figure 32 – Example of a radar chart to graphically represent the distribution of potential influ-

ence on commercial software engineering planning

When the Software Planning Forces Model is used in conjunction with the Counter-
force Decision Table (described in the following subsection), then it can form an im-
portant part of planning, not only for individual software projects, but also for improv-
ing, optimising and thus strengthening the overall situation within the company.

5.4.8 Counterforce Decision Table

Earl (1989, p. 55) cites the work of Porter and Millar, McFarlan as well as Cash and
Konsynski “(...) who have built upon Porter’s model to suggest how IT can limit and
enhance the five competitive forces for a firm”. In a similar manner, the Counterforce
Decision table displays the forces acting upon commercial SE planning. Most impor-
tantly, it can help to identify appropriate counter-forces to address a specific problem
with high efficiency.

The Counterforce Decision Table can be found in Appendix A.

82

5 – Planning for High Quality in Commercial SE Projects

5.5 The Software IntelliPlan

The semantics for the software IntelliPlan are based on the Commercial Software En-
gineering Planning Framework. Practical applicability of the framework may be vali-
dated more precisely when using a supporting software application rather than in a
theoretical manner through pen and paper only. The software is a prototype and proof
of concept and therefore provides implementation of core concepts described in the
framework. Despite the conceptual stage of development, IntelliPlan can be used to
support common software project planning models and applications.

5.5.1 Design Specification

The software was designed and developed using the following main steps:

1. Design of use cases (see Appendix B)

2. Research into technical feasibility (development of several stand-alone applica-
tions to test the programming concepts).

3. Design and development of the GUI.

4. Creation of a conceptual class diagram.

5. Implementation of core functionality (semantics of the Commercial Software
Engineering Planning Framework).

6. Implementation of supporting functionality (e.g. data access layer).

7. Extraction of detailed class diagram (see Appendix C).

8. Testing during development was conducted in an informal manner. A descrip-
tion of formal testing procedures can be found in chapter 6.

5.5.2 Details on the Development

5.5.2.1 Choice of technology
IntelliPlan is written in the programming language C#, using MS Visual Studio (VS)
2008 as an IDE. This combination was chosen as it allows for relatively rapid imple-
mentation of a prototype. Microsoft .NET framework 3.5 was used rather than develop-
ing with an older version, because it provides generic lists which offer better perform-
ance than comparable data structures used in earlier versions of the framework.

The usage of Windows Forms in conjunction with Visual Studio 2008 to implement
the GUI is useful specifically in prototyping for two reasons:
Firstly, the complexity of event handling of graphical components is partially done by
the IDE. Secondly, handling of GUI components (e.g. refreshing and updating con-
tents) requires less effort from the developer than this is the case with e.g. ASP.NET
web applications and thus is ideal for quick implementation of prototype software.

Persistence (storage) of data is implemented using XML (eXtensible Markup Lan-
guage). For the prototype of IntelliPlan, this approach is more suitable than using a da-

83

5 – Planning for High Quality in Commercial SE Projects

tabase for information storage, because the concept does not require the user to store
large amounts of data. Hence, there is no need to install additional database software.
XML also improves usability in this case as the information is stored in one single pro-
ject file. Functional tests were conducted using the integrated testing suit of MS Visual
Studio (VS) 2008.

5.5.2.2 Development strategy
The development strategy concerns the handling of the VS solution19. It comprises in-
termediate functional tests, documentation, versioning and a suitable backup strategy.

During development, the quality of existing code was improved by several informal
functional tests. These tests included debugging of the code in case an error was found:
the IDE was used to monitor the contents of certain variables and to assess program
behaviour as e.g. branching.
Important classes and methods within the IntelliPlan codebase contain XML documen-
tation which gets automatically extracted and is written into an XML file during com-
pilation. This file can be used to e.g. create standardised documentation files of the
code.
The solution received several different version numbers during development in order to
support the backup strategy. At the end of every major implementation step, a complete
backup of the entire solution was created.

5.5.2.3 Decisions on the program structure
Usage of standardised design patterns20 facilitates sound practice in software develop-
ment. The code for IntelliPlan makes use of these patterns:
to control the application, the Model-View-Controller (MVC) and the Observer pattern
were used (partially handled by VS). Furthermore, the patterns Singleton and Factory
were applied to suitable classes. The MVC pattern allows decoupling of entities,
graphical representation and application management layers. The Singleton pattern, for
example, insures the existence of only one single instance of management classes such
as ApplicationManager and EntityManager. The factory method pattern is applied to
the class ProjectFactory, which instantiates (creates objects of) the entities SEProject
and Person. The purpose of the class EntityManager is to hold references to major enti-
ties: in case components require a factory to create an object of a certain type, then this
request gets handled through EntityManager to insure consistency in the number of
instantiated entities.

The class diagram for IntelliPlan can be found in Appendix C. The diagram provides
an overview but excludes design pattern behaviour (e.g. Singleton) and details on rela-

19 Solution refers to the file created via MS Visual Studio holding references to development projects.
20 See Bibliography: Gamma et al (1995)

84

5 – Planning for High Quality in Commercial SE Projects

tionships among classes, because the design of IntelliPlan is limited to the requirements
of a conceptual prototype.

5.5.2.4 Data management and storage
As explained above, IntelliPlan uses the technology XML to store data. This includes
the general configuration of the software as well as project-specific information. The
classes SEProject and Person are implemented in such a way allowing their concrete
objects to be directly serialised into XML files using standardised serialisation classes
provided in .NET 3.5. Vice versa, de-serialisation from XML files into respective ob-
jects is implemented in a similar manner. The two methods for serialisation and de-
serialisation reside on the data access layer in the class ApplicationManager.
The functionality of the data access methods is created in a generic way (analysis of
object types via reflection in C#), allowing them to be used for serialisation of not only
objects of type SEProject, Configuration or Person, but virtually any type of object
(given it conforms to the requirements for serialisation as e.g. declaring the class public
and defining properties to provide the serialisation method with access to values stored
in private variables). The approach of writing generic methods (where appropriate) has
another positive effect: the code can be reused for other C# applications compatible
with .NET 3.5 which may require this functionality.

5.5.2.5 Code optimisation and maintainability
To facilitate maintainability in the source code, the functionality on GUI level is con-
solidated into further methods (rather than residing in methods which get invoked
through event handling). Some examples for such methods are CloseProject, SavePro-
ject and RefreshGUIState. This approach also avoids code duplications in the program
which in turn mitigates the probability of introducing new errors while fixing existing
ones.

To further improve maintainability through readability, formatting functionality of the
IDE was used, resulting in consistent layout of the code (program semantics are usually
not affected if this is done with care). In addition, naming convention for files, classes,
variables (Hungarian notation21) and methods provides sound information on respec-
tive purposes, types and functionality.

5.5.2.6 Graphical user interface
The design of the GUI for IntelliPlan follows the concept of “eight golden rules of in-
terface design” described by Shneiderman and Plaisant (2005), where this was suitable
for the prototype. One example is the display of hints for the usage of mnemonic short-
cuts. Also, IntelliPlan supports the user with guidance: for example, in case the user
forgot to configure the software prior to creating or opening a project, then a message

21 The Hungarian notation (variable name indicating its type) has not been used for all types as e.g. en-
tity classes of IntelliPlan, as this would have made the code less simple to read and understand.

85

5 – Planning for High Quality in Commercial SE Projects

box gets displayed with respective information on how to proceed. After the configura-
tion is created by the user, IntelliPlan continues with the operation requested by the
user in the first place.

In order to further increase usability, the order of tab positions (i.e. to which control the
cursor focuses on if the user presses the tabulator key) was considered. In case the user
enters invalid data, then a red exclamation mark is displayed next to the control which
caused the error. This was achieved by using error providers and through the creation
of validating text boxes. The validating text box is derived from a normal text box con-
trol but extended with functionality to check the entry made by the user against a regu-
lar expression.

5.5.2.7 Memory management and resources
Even though C# runs a garbage-collection engine, memory management issues needed
to be addressed when displaying Windows forms as dialogs: it is necessary to explicitly
dispose the form after the user has closed it because the program has created the win-
dow in a new thread and hence is not capable of determining when to remove the refer-
ence to the instance of the form.

In addition, IntelliPlan uses resource files to store images, icons and most of the titles,
texts and captions for e.g. Windows forms, message boxes and labels. This centralised
way of storing descriptive information is beneficial when using IntelliPlan for a differ-
ent language. Rather than changing all occurrences of descriptive strings in the code, a
different resource file can be created which can then be used during compilation.
Hence, if a resource file for e.g. the German language is created, then the entire soft-
ware application can be translated into this language with little effort from the devel-
oper.

5.5.2.8 Error handling
IntelliPlan handles exceptions such as erroneous XML files via delegate event handlers
(similar to function pointers). After exceptions are being caught and handled on low-
level layers such as data access, the exception is thrown further up in the invocation
chain. This in turn enables to display error messages which are not only appropriate but
also user friendly as technical jargon is kept to a minimum.

5.5.3 Problems and Solutions

Certain challenges were encountered on the way to a functional prototype of In-
telliPlan. For example, state transitions to manage GUI behaviour were difficult to im-
plement as well as decoupling of functionality to create layers. One of the most diffi-
cult challenges during this project however, was the creation of a generic dictionary
(storing data in key/value representation similar to a hash-map) which can be serialised
into XML. The problem was solved by collecting information on the Internet about
how such a dictionary could be implemented most effectively.

86

5 – Planning for High Quality in Commercial SE Projects

5.5.4 Presentation of the Software

In the context of the research, the purpose of the software prototype IntelliPlan is to
prove technical feasibility of the framework. An additional benefit from implementing
a practical representation of the framework is increased precision of validation: be-
cause the validating experts are not solely confronted with theory but can practically
apply the concepts by using the software, they may be more able to come to a conclu-
sion whether they find the concepts to be of intellectual and practical value.

Figure 33 – Main Menu which is displayed when the program is started

Figure 34 – Program information when the user selects the "About" button or respective entry in

the main drop-down menu

87

5 – Planning for High Quality in Commercial SE Projects

If the user attempts to create a new project or opens an existing project file, IntelliPlan
may ask to go through the steps of configuring the software. This is usually the case
when using the program for the first time: the program checks if a configuration file
can be found in the directory of the binary executable (installation directory) of In-
telliPlan. If the program has never been configured since its installation or the user has
manually deleted the configuration file, then the following message is displayed:

Figure 35 – Message box to ask the user to configure IntelliPlan

The following figure shows the configuration screen which allows the user to input
general data concerning the software company. Using the interface, it is possible to set
a generic corporate strategy and to add additional notes. Furthermore, the user can de-
fine certain technical and business skills with respective proficiency levels for re-
sources and add them to a list. In addition, it is possible not only to remove a resource
from the list but also to select and remove certain subentries.

Figure 36 – Configuration interface for IntelliPlan

In case a configuration file already exists and the user chooses to amend the existing
configuration by clicking the configure button on the main menu, the application will

88

5 – Planning for High Quality in Commercial SE Projects

ask the user to confirm the replacement of the configuration. This insures that the user
does not unintentionally overwrite the configuration.

Figure 37 – Message box to avoid accidental amendments of an existing configuration

If the user clicks the OK button on the configuration screen (and clicks Yes in case the
message box appears) then the configuration is written to the file “Config.xml” resid-
ing in the installation directory.

Figure 38 – User interface to create a new project and to edit an existing project

As shown in figure 38, the user can provide the software with project-specific informa-
tion. If the user edits an existing project, the components (e.g. text box) in all tabs of
the form (Project Details, Strategic Assessment Matrix etc.) are updated with respec-
tive values to be ready for amendment by the user. In case the user chooses to create a
new project, the components display standard values to exemplify their usage.

The following figure shows an example of error handling in case the user enters invalid
data:

89

5 – Planning for High Quality in Commercial SE Projects

Figure 39 – Error handling of invalid data entered by the user

When creating or editing a project, the user can allocate resources while displaying in-
dividual competencies. Upon allocation or removal, the colour of the resource changes
in the list of available resources accordingly. This improves the overview as the user
can see more easily which resources have already been allocated.

Figure 40 – Resource allocation tab

The tab “Stakeholders” contains a mock-up version of a stakeholder influence map to
indicate how this functionality may be represented graphically.

90

5 – Planning for High Quality in Commercial SE Projects

Figure 41 – Mock-up version of a stakeholder influence map;

source of inserted figure: MindTools (2009)

If the user clicks OK even though he or she has not yet visited the tab “Strategic As-
sessment Matrix”, then the following message is displayed and the user is redirected to
the respective tab:

Figure 42 – Message box to remind the user to set a strategic target

91

5 – Planning for High Quality in Commercial SE Projects

Figure 43 – Strategic Assessment Matrix integrated into IntelliPlan

As soon as the user moves the mouse over the matrix, the cursor changes to a crosshair
and a descriptive hint is displayed in the top right corner of the interface. The hint dis-
appears as soon as the user clicks into the matrix to set the strategic position for the
software product. In order to amend the location of the software product, the user sim-
ply has to click at a different position within the Strategic Assessment Matrix.

Upon clicking the OK button with all required values set correctly, the program closes
the create/edit project form and returns to the main menu.

92

5 – Planning for High Quality in Commercial SE Projects

Figure 44 – Main menu displaying a project loaded into the memory

The tabs of the main menu show project relevant information as well as general corpo-
rate information defined by the user during configuration. The information displayed
on all tabs of this form cannot be edited (to edit the project, the user has to select the
Edit Project button in the main menu).

93

5 – Planning for High Quality in Commercial SE Projects

Figure 45 – Main menu: Project Details tab

The tab displaying Project Details contains a percentagewise representation of the val-
ues set by the user graphically in the Strategic Assessment Matrix. All other values on
this tab are reproduced in the same way the user has provided the data. This also ap-
plies to the Corporate Strategy tab which displays the data from the configuration of
IntelliPlan as shown below:

94

5 – Planning for High Quality in Commercial SE Projects

Figure 46 – Main menu: Corporate Strategy tab

(N.B.: the stakeholders tab contains the same mock-up graphic as shown in figure 41).
Tooltips provide the user with hints regarding the functionality of the buttons in the
toolbar of the main menu:

Figure 47 – Example of tooltips for buttons on the tool bar

If unsaved changes are pending and the user attempts to create a new project, closes an
existing project or exits the program, IntelliPlan displays a message box asking the user
whether he or she wishes to save the changes persistently:

Figure 48 – Message box to ask the user whether the project shall be stored to a file

95

5 – Planning for High Quality in Commercial SE Projects

The user can save a newly created project to an IntelliPlan project file. In addition, it is
possible to save an existing project file to a new one (e.g. in order to create a new file
for storage of amended information). In case an existing project file in the chosen di-
rectory would be replaced because it has the same name as the one chosen by the user,
IntelliPlan points out this potential replacement by asking the user how to proceed:

Figure 49 – Message box dialog for saving a file in case the filename already exists in the selected

directory

The user can load an existing project file from a data volume using the dialog to open
project files as shown in figure 50.

96

5 – Planning for High Quality in Commercial SE Projects

Figure 50 – User dialog to open an existing project file

In case a project file is malformed e.g. because it was modified manually without ad-
hering to the rules for XML formatting for IntelliPlan project files, an exception occurs
which is handled by IntelliPlan in order to display an appropriate error message:

Figure 51 – Error message in case an exception occurred due to a malformed XML file

5.6 Summary and Further Suggestions

The implementation of IntelliPlan has been successful as it provides a demonstration of
how to apply some parts of the Commercial Software Engineering Framework in prac-
tice. The software has proven important for validation of the theoretical framework as
described in the following chapter.

If the software is to be developed further, it should be considered to transform it into a
collaborative web-based application. Centralisation of project planning using thin cli-
ents also helps to achieve a consistent database. If the software is to be used by external
consultants, respective security measures should be in place to prevent from accidently
revealing confidential information about e.g. internal strategic decisions.

With regard to the configuration functionality of IntelliPlan, it might be useful to de-
sign a stepwise tutorial resembling a digital questionnaire. The questionnaire approach
would enable to have the software configured by members of different corporate de-
partments rather than just by one user. This way the software can learn more about aim

97

5 – Planning for High Quality in Commercial SE Projects

and objectives of corporate departments which in turn would enable it to provide better
guidance for project planning. IntelliPlan would become more bespoke to the particular
company.

Further enhancements may comprise usage of interfaces to AI applications written e.g.
in the language Prolog. The AI could support the software engineer in making planning
decisions by assessing information regarding the project, the software company and the
organisation of the customer. XML data from common generic project planning tools
such as MS Project could be imported, which would enable IntelliPlan to be used for
analysis of existing project plans.

A significant improvement may be simulation capabilities of different project scenarios
as indicated in 3.5.2, 5.4.2 and 5.4.4). The Strategic Option Generator by Wiseman
(1985 cited in Callon 1996) could serve as an example of how to structure such a pro-
ject simulation. ICBF as well as explicit project-specific factors could be summarised
in this manner, resulting in a sound visual representation of the project conditions. The
AI could then suggest several different outcomes which may be represented using the
same model.

98

6 – Testing and Validation

Chapter Six

The previous chapter describes the Commercial Software Engineering Planning
Framework and the software prototype IntelliPlan. The ideas and concepts for these
two artefacts are inspired by research findings of preceding chapters.

6 Testing and Validation

6.1 Overview

The following sections are to insure scientific and practical relevance of the two deliv-
ered artefacts through validation. The chapter begins with an explanation of the chosen
validation method and a description of functional tests for the software prototype In-
telliPlan. Subsequent semantic validation of framework and prototype comprises the
opinion of a scholar as well as feedback from industry experts. The chapter closes by
drawing a conclusion from input provided from the participants.

6.2 Validation Method

There is a wide range of options to validate artefacts: possible methods comprise e.g.
questionnaires, think-aloud protocols, semi-structured interviews and focus groups.
However, it has to be elicited which validation method is most suitable for the particu-
lar deliverable. In the case of the Commercial SE Planning Framework and the soft-
ware prototype IntelliPlan, a Simulated Project Scenario resembling a case study in
combination with an informal protocol for the purpose of recording feedback was cho-
sen as a suitable method to validate both artefacts.
The reason is as follows: research and development conducted in this work is focused
on proof of concept rather than details on technical feasibility. Quantitative methods
such as questionnaires might fail to capture valuable opinions and ideas potentially
arising from out-of-the-box thinking, as participants are experienced experts in the
field of SE and thus may provide respective information.

The validation complies with ethical standards and participants were informed about
these standards: the persons were asked to read- and fill in an ethical consent form (see
Appendix D). In order to convey understanding of the practical context in which both
the framework and the prototype could be applied, a simulated project scenario was
provided to the participants. The scenario describes a fictitious software project situa-
tion and can be found in Appendix E. Notes were taken during discussions with par-
ticipants concerning the research work, the artefacts and potential application of
framework and software prototype to the simulated project scenario.

99

6 – Testing and Validation

6.3 Functional Test of IntelliPlan

The functionality of the program was tested manually during development. However,
some methods can be considered critical and trigger the need for the creation of auto-
mated tests. IntelliPlan contains test units for the data access layer:
the class ApplicationManager is checked for correct instantiation. Furthermore, two of
its generic methods for object serialisation and de-serialisation were tested. These
methods represent crucial functionality as they contain the code to handle XML con-
figuration- and project files.
The testing suite which is integrated into MS Visual Studio 2008 is used for the pur-
pose of running the automated tests. This has the advantage that the test project can be
integrated into the project solution without having to modify the original source code
of IntelliPlan. Furthermore, no references to test-specific .NET components need to be
integrated into the IntelliPlan project, as the testing code resides in a separate project
configuration. A further advantage is that the test environment is embedded into the
IDE which allows for efficient and concise management of the testing procedures.

The expected behaviour of the functionality is defined in the code of the individual test
methods. Assertion instructions determine whether a test has passed or failed:

Figure 52 – Code for a method to test XML serialisation for IntelliPlan

The example above investigates whether the serialisation has been successful, not only
by checking the return value of the method SerializeToXMLFile, but also through in-
vestigation whether the file “TestProject.xml” has actually been created.

100

6 – Testing and Validation

Figure 53 – Test results as displayed in MS Visual Studio 2008

Functional tests of the GUI were conducted manually. Because IntelliPlan is in the de-
velopment stage of a prototype, the behaviour of the GUI was checked mainly against
common sense criteria rather than a detailed specification. The use case diagram (Ap-
pendix B) is a helpful mnemonic aid for evaluating the behaviour of the interface re-
garding its possible states.

6.4 Semantic Validation by an Academic Expert

The participant of the validation appraises the artefacts as follows:
the Commercial SE Planning Framework adds value to project planning. The prototype
IntelliPlan is easy to use and shows indications of possessing procedures to guide the
user. According to the participant, further development of the software planning tool
should focus to provide even more guidance to the user as this may make successful
planning less dependent on the experience of the project manager.

Further remarks by the scholar address cross-department usability: IntelliPlan “speaks
the language” of business departments and can therefore be very useful for some soft-
ware engineers to improve their communication skills when conveying ideas to busi-
ness departments on a less technical level.
The scholar agrees with the research findings regarding generic project planning tools
and notes that, for example, in the case of COCOMO II it might not be possible to plan
task duration by approximating the number of lines of code which have to be delivered
for a certain software development task. The reason is that not every line of code may
take the same amount of time to be written as complexity and entropy can heavily vary.

Contingency planning should be linked to the respective strategic or operational rele-
vance of the software product or project. Hence, if a project is of e.g. significant impor-

101

6 – Testing and Validation

tance from a strategic perspective, the framework and the software tool need to empha-
sise the importance of contingency planning to the user.

With regard to the concept of stakeholder influence mapping, the scholar states that
connections and communication between stakeholders as well as exertion of influence
need to be represented in an explicit fashion. However, the academic expert also points
out that only the term “sufficient satisfaction” of stakeholders (rather than just the word
“satisfaction”) may be suitable as it is seldom the case that all stakeholders can be
made “happy” at the same time.

The participant is of the opinion that long-term strategic planning within organisations
can be denoted as “programs” such as e.g. the space program. According to the aca-
demic expert, strategies have become more focused on aiming for short-term economic
goals rather than pursuing long-term objectives. This may have to be considered when
developing such a planning tool as IntelliPlan for strategic alignment.

6.5 Semantic Validation by Industry Experts

The industry experts are of the opinion that the concept can fill a void in current project
planning for SE projects. They state that implicit factors as e.g. technical skills of de-
velopers and potential shortfall due to sickness of persons need to be integrated in the
project plan. Therefore, in the opinion of the participants, the framework is ideal in that
it expresses implicit facts in an explicit, but simple way. With regard to capturing skills
of resources, the experts note that assessment of individual skills can be wrong when it
is left to the discernment of the respective project manager.

The forces model was considered as a helpful tool to induce a discussion in the com-
pany on basic factors influencing a project.

The industry experts note that the framework and the software IntelliPlan would be
useful for planning of bespoke systems rather than off-the-shelf products. The reason is
as follows: during bespoke commercial SE projects, the customer tends to control time
and material. This is especially the case if a customer company has its own IT depart-
ment. According to the validating participants, justification of the budget for the pro-
ject or individual items can be vastly improved by using this framework and its strate-
gic components in particular. Off-the-shelf mass products may be developed internally
and expenses for research and implementation might therefore be indeed a subject to
discussion, but justification from a strategic vantage point might become less relevant.
In other words, the company aims to build a certain product which could yield reve-
nues in future sales “anyway”, whereas customers of bespoke systems may tend to be
insecure whether the money is being spent wisely.

One expert comments that the framework can be particularly helpful in planning for
fixed-cost projects – as described above for the reason that it might help justifying de-
velopment expenses. He also states that the framework may be less relevant to plan-
ning for time-based change requests (financially chargeable amendments of the exist-

102

6 – Testing and Validation

ing system). The reason could be that some of these customer requests might be too
insignificant to have a strategic meaning.

With regard to pressure of customers on senior management, the experts emphasise
that this problem usually does not occur until development is already commenced.
Therefore, it can be difficult during planning stages to anticipate the occurrence of such
a force.

The validation participants disagree with the negative notion of influence by legal de-
partments stated in the research: legal aspects and policies can contribute to the quality
and motivation of the customer and thus have a positive side.

The industry experts were asked if it would be a good idea to extend the planning tool
in a way that it incorporates artificial intelligence and possibly data mining functional-
ity in order to guide decision making of the user. The participants note that such an ap-
plication may be the only way forward to improve existing SE planning tools. How-
ever, they suggest that long-term tracking of estimations can become a double-edged
sword as this can lead to overly optimistic project planning. Project managers could be
afraid that they accumulate a digital history of estimations which turned out to be inac-
curate.

Concerning the prototype, the experts are of the opinion that IntelliPlan conveys the
framework in a suitable manner. If further development takes place, it should empha-
sise on more intensive guidance of the user in his or her decision making.

One of the experts suggests that when considering the work from a higher vantage
point, the concept of the framework and the supporting software tool does not have to
stop with the IT industry. Virtually any industry has to deal with implicit planning fac-
tors and corporate strategies.

The participants state that if the framework would be integrated into a fully functional
planning software providing guidance and compatibility with file formats of existing
generic project tools, IntelliPlan is a product they would be willing to buy.

6.6 Conclusion

All participants consider framework and prototype to be innovative and useful. An in-
teresting finding elicited during the validation is that the importance of software guid-
ance in decision making has been emphasised by the scholar as well as by the industry
experts. Therefore, even though participants deem the prototype to be easy to use, po-
tential for improvement may lie in implementing a system which guides the user
through all sorts of project planning situations – this could be realised e.g. by creating a
wizard as well as electronic planning tutorials.

103

7 – Conclusion and Future Outlook

Chapter Seven

7 Conclusion and Future Outlook

7.1 Key Contributions

The literature review helps the reader to better understand why software engineering
may be problematic in some areas compared to other engineering disciplines. The con-
trasting and comparing of books, conference papers and proceedings, Internet sources,
journal and newspaper articles, transactions and research papers has yielded new in-
sights into peculiarities of software engineering. Furthermore, the review undertaken
helped to partially describe the discipline from a non-technical perspective. This in turn
made it possible to elicit a potential source of issues which in detail might have not
been considered to date: the degree of influence external factors can exert on a soft-
ware project. These factors are identified and denoted in this work as Implicit Corpo-
rate Business Factors.

The research following the literature review contributes valuable insight into potential
shortcomings of current project planning. Also, description and investigation of ICBF
can help the reader to better comprehend organisational forces acting upon a commer-
cial software project. ICBF form the basis for creation of the Software Engineering
Planning Framework and the prototype IntelliPlan.

A sound validation of these key contributions through three experts in the field of
software engineering helps to insure the academic and practical relevance of the find-
ings.

7.2 Reflection on Achievements and Research Answer

The research on software engineering discovered new aspects of the discipline and al-
lows the reader to understand this knowledge field from a different perspective through
technical- as well as non-technical viewpoints. Value is added to the body of knowl-
edge especially by providing opportunities to improve project planning. The production
of artefacts turned out to be invaluable to convey the research findings in a concise
manner and to allow for efficient validation of the work.

The research question stated in the introduction and literature review is formulated as
follows:

Is recognition and consideration of implicit corporate business factors and integration
of these factors into planning for commercial SE projects a potential key to successful
software engineering projects?

104

7 – Conclusion and Future Outlook

When taking into account the outcomes of the validation of the deliverables, then the
research question can be answered with a sound “yes”. Findings of this work show that
project planning for commercial software engineering may need to break through the
scope of being focused mainly on technical aspects: forces exerted by external factors
to SE projects differ from other disciplines such as construction engineering, simply
due to the nature of software as shown in this work.
Therefore, it is vital to consider these forces in project planning. The validation has
clearly shown that the Commercial Software Engineering Planning Framework as well
as the prototype IntelliPlan, which are both based on research findings such as ICBF,
may indeed be a key to more successful projects and thus higher quality in commercial
software engineering.

7.3 Potential Commercial Value

The industry experts stated during the validation that if the software prototype In-
telliPlan would be developed into a more sophisticated software application, they
would be willing to buy this product as they found it can add value to their project
planning. Recommendations of the author concerning further development of this
planning tool can be found in section 7.5.

7.4 General Strengths and Weaknesses

One of the strengths of the research findings lies within its relevance: the analysis of
software engineering and external factors may help the reader to better understand the
potential origin of problems with software projects. As many issues with commercial
SE projects prevail to date, it is important to provide investigation into these problems.

The major strengths of framework and prototype lie in the potential reduction of im-
prudent intervention in software project planning. In addition, the artefacts can help to
justify budget requirements to management and customers and thus can make life eas-
ier for software engineers. The validation found that both framework and prototype are
easy to understand and to use. This achievement was important to the author as he be-
lieves that sound and understandable common-sense planning methods are crucial es-
pecially when planning for large and complex software systems.

The framework may be improved in that it could be extended to consider more eco-
nomic and industry factors in order to become more accurate, but these additional at-
tributes need to be added through layers without introducing too much complexity.

The prototype was helpful in validation of the framework but would need to be more
sophisticated in order add value to a real commercial software venture.

105

7 – Conclusion and Future Outlook

7.5 Recommendations for Further Research and Development

It may be worthwhile to conduct research into how other knowledge fields manage to
pursue their interests despite prevailing forces in organisational environments. For ex-
ample, Armstrong (1992) describes problems, approaches and opportunities when inte-
grating business interests and human resource strategies. Similar research may exist for
other disciplines and could be taken into account when further developing the Com-
mercial Software Engineering Planning Framework.

As mentioned in section 5.6, AI could be utilised in supporting the software engineer
with guidance for decision making during project planning. This opportunity should be
considered when conducting further development on IntelliPlan. In addition, the plan-
ning software might serve its purpose best if it becomes a web-based application which
could be made accessible by mobile devices – e.g. for consultants to remotely log in
when being on-site with clients.

The software company would buy IntelliPlan as an off-the-shelf application. As the
software is being used over time, it may learn about the peculiarities of the organisation
as e.g. the objectives of its different departments. Hence, through using InteliPlan, it
becomes increasingly bespoke. The underlying project planning data may become in-
valuable to the software company and could provide competitive advantage. Apart
from the data described in this research, the software could comprise further informa-
tion such as

• corporate project history

• estimations history (including accuracy of estimations in the past)

• location of reusable components

• further technical expertise (in addition to competencies of resources)

As suggested by an industry expert during the validation of the framework and the
software prototype, some functionality of IntelliPlan could be applied to other indus-
tries as well, given that corporate strategies are present in a wide variety of corpora-
tions outside the field of software. However, this undertaking should be branched out
into a separate project, as IntelliPlan would otherwise become too generic, which in
turn is a major disadvantage of common project planning tools as shown in the re-
search of this work.

106

7 – Conclusion and Future Outlook

107

7.6 Future Outlook

Chapter four emphasises that the initiative for positive change in software companies
might have to come from software engineers. This entails the danger of creating solu-
tions that remain aimed at technical issues only. However, as shown in this work, for
measures to be effective, they may need to consider the entire organisation.

The software engineering discipline will mature over the decades to come, but this
process needs to be supported and facilitated. Accreditation of the discipline and con-
sensus on a body of knowledge are still crucial for the discipline to evolve, but these
measures need to be complemented by further efforts in the field of commercial soft-
ware projects. The author believes that considerate project planning described in this
research might play a significant role in the prospective evolution of software engineer-
ing.

7.7 Concluding Thoughts

The concepts presented in this work can obviously be employed at the discretion of the
respective management of software companies. In other words, it could happen that
certain principles are overruled, ignored or amended depending on the particular pro-
ject scenario or corporate situation. This cannot be categorised as a weakness or disad-
vantage of the Commercial Software Engineering Planning Framework as it simply lies
outside the area it can possibly address. However, the framework might be able to sig-
nificantly mitigate the issue of imprudent interventions, as it is mirrors the strategic
impact of amendments to project planning.

With regard to human resource management, Purcell (1989 cited in Armstrong 1992, p.
32) makes the following statement: “If it were possible to demonstrate that ‘enlight-
ened’ or progressive approaches to the management of people were invariably associ-
ated with higher productivity, lower unit costs and improved profit, life would be easier
for the human resource planner”.
Considering the research findings of this work, similarities of the statement above with
software engineering are staggering.

There may be no silver bullet to quickly resolve all issues of the software engineering
discipline at once, but these difficulties can and should be seen as a fascinating chal-
lenge. It may not often be the case that scholars and practitioners have the chance to
significantly contribute to the evolution of the discipline they work in.

Software engineers might be fortunate.

References

References

Books

Ambler, S.W. & Nalbone, J. & Vizdos, M.J., 2005. The enterprise unified process,
extending the rational unified process. Prentice Hall PTR.

Armstrong, M. ed., 1992. Strategies for human resource management, a total busi-
ness approach. London: Kogan Page Ltd.

Bainbridge, D.I., 2008. Introduction to information technology law. 6th ed. Harlow,
Essex: Pearson Education Ltd.

Beck, K., Andres, C., 2004. Extreme programming explained, embrace change. 2nd
ed. Addison-Wesley.

Bergström, S., Råberg, L., 2003. Adopting the rational unified process, success with
the RUP. Addison-Wesley.

Boehm, B.W. et al., 2000. Software cost estimation with COCOMO II. Upper Saddle
River, New Jersey: Prentice Hall PTR.

Bott, F., 2001. Professional issues in software engineering. 3rd ed. London: Taylor and
Francis.

Brooks, F.P., 1995. The mythical man-month, essays on software engineering. Rev.
ed. Reading, Massachusetts: Addison-Wesley.

Byars, R., 1997. Management, skills and application. 8th ed. Chicago: Irwin.

Callon, J.D., 1996. Competitive advantage through information technology. New
York: McGraw-Hill.

Currie, D., 2006. Introduction to human resource management, a guide to personnel
in practice. London: Chartered Institute of Personnel and Development.

Damodaran, A., 2001. Corporate finance, theory and practice. 2nd ed. New York:
John Wiley & Sons, Inc.

Deek, F.P. & McHugh, J.A.M. & Eljabiri, O.M., 2005. Strategic software engineer-
ing, an interdisciplinary approach. London: Auerbach.

Earl, M.J. 1989. Management strategies for information technology. Hemel Hemp-
stead: Prentice Hall Ltd.

Emam, K.E., 2005. The ROI from software quality. Boca Raton, FL: Auerbach Publi-
cations

108

References

Eva, M., 1992. SSADM version 4: a user’s guide. McGraw-Hill.

Glass, R.L., 1998. Software runaways – lessons learned from massive software project
failures. Upper Saddle River, New Jersey: Prentice-Hall Inc.

Ionescu, D. & Cornell, A. eds., 2007. Real-time systems. Singapore: World Scientific
Publishing Co. Pte. Ltd.

IT Governance Institute, 2007. IT assurance guide, Using COBIT. Rolling Meadows,
IL: IT Governance Institute.

Johnson, G. & Scholes, K. & Whittington, R., 2008. Exploring corporate strategy,
text & cases. 8th ed. Harlow, Essex: Pearson Education Ltd.

Khan, R.A. & Mustafa, K. & Ahson, S.I., 2006. Software quality, concepts and prac-
tices. Oxford: Alpha Science.

Kerr, J., Hunter, R., 1994. Inside RAD, how to build fully functional computer sys-
tems in 90 days or less. McGraw-Hill, Inc.

Nah, F.F., 2002. Enterprise resource planning solutions & management. London: IRM
Press.

Porter, M.E., 1980. Competitive strategy, techniques for analyzing industries and
competitors. 1st ed. New York: Free Press.

Shneiderman, B. & Plaisant, C., 2005. Designing the user interface. 4th ed. London:
Pearson Education, Inc. / Addison-Wesley.

Sommerville, I., 1993. Software engineering. 4th ed. Addison-Wesley.

Tayntor, C.B., 2007. Six Sigma software development. 2nd ed. Boca Raton, FL: Auer-
bach Publications.

Tian, J., 2005. Software quality engineering, testing, quality assurance, and quantifi-
able improvement. Hoboken, N.J.: John Wiley & Sons Inc.

Tunkel, D. & York, S., 2000. E-commerce, a guide to the law of electronic business.
2nd ed. London: Butterworths.

Ward, J. & Peppard, J., 2002. Strategic planning for information systems. 3rd ed.
Chichester, West Sussex: John Wiley & Sons Ltd.

Watson, D. & Head, A., 2007. Corporate finance, principles & practice. 4th ed. Har-
low, Essex: Pearson Education.

Yourdon, E., 2004. Death march. 2nd ed. Upper Saddle River, New Jersey: Prentice
Hall Professional Technical Reference.

109

References

Conference Papers and Proceedings

Boehm, B.W., 2006. A view of 20th and 21st century software engineering. [online].
In ACM, International conference on software engineering, Shanghai, China, May 20–
28 2006. Available at: http://portal.acm.org/citation.cfm?id=1134285.1134288 [ac-
cessed 2 October 2008].

Bryant, A., 2000. ‘It’s engineering Jim ... but not as we know it’, software engineering
– solution to the software crisis, or part of the problem? In The Association for Com-
puting Machinery, 22nd International conference on software engineering: ICSE 2000.
Limerick, Ireland, 4–11 June 2000. ACM: New York.

Dawson, R., 2000. Twenty dirty tricks to train software engineers. In The Association
for Computing Machinery, 22nd International conference on software engineering:
ICSE 2000. Limerick, Ireland, 4–11 June 2000. ACM: New York.

Drappa, A. & Ludewig, J., 2000. Simulation in software engineering training. In The
Association for Computing Machinery, 22nd International conference on software en-
gineering: ICSE 2000. Limerick, Ireland, 4–11 June 2000. ACM: New York.

Fraser, S.D., et al., 2007. “No silver bullet reloaded”, a retrospective on “essence and
accidents of software engineering”. [online]. Conference on object oriented program-
ming systems languages and applications, Montreal, Quebec, Canada, pp. 1026-1030.
Available at: http://portal.acm.org/citation.cfm?id=1297846.1297973 [accessed 1 No-
vember 2008]. ACM Press: New York.

Grimson, J.B. & Kugler, H.J., 2000. Software needs engineering – a position paper.
In The Association for Computing Machinery, 22nd International conference on soft-
ware engineering: ICSE 2000. Limerick, Ireland, 4–11 June 2000. ACM: New York.

Naur, P. & Randell, B., 1969. Software Engineering. Report on a conference spon-
sored by the NATO SCIENCE COMMITTEE, [online], Garmisch, Germany, 7th to 11th
October 1968. Available at: http://homepages.cs.ncl.ac.uk/brian.randell/NATO/ [ac-
cessed 16 October 2008].

Parnas, D.L., 1994. Software aging. [online]. 16th International conference on soft-
ware engineering, Sorrento, Italy, pp. 279-287. Available at:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=296790 [accessed 2 October
2008]. IEEE Computer Society Press: Los Alamitos, CA, USA.

Royce, W.W., 1970. Managing the development of large software systems. In Pro-
ceedings of IEEE WESCON. Agosto, 1970, IEEE. Available at:
http://facweb.cs.depaul.edu/jhuang/is553/Royce.pdf [accessed 05 January 2009].

110

http://portal.acm.org/citation.cfm?id=1134285.1134288
http://portal.acm.org/citation.cfm?id=1297846.1297973
http://homepages.cs.ncl.ac.uk/brian.randell/NATO/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=296790
http://facweb.cs.depaul.edu/jhuang/is553/Royce.pdf

References

Stewart, G.A. & Cameron, D. & Cowan, G.A. & McCance, G., 2007. Storage and
data management in EGEE. [online]. Fifth Australasian symposium on grid computing
and e-Research (AusGrid 2007). Ballarat, Australia, 30 January – 02 February 2007.
Available at: http://portal.acm.org/citation.cfm?id=1274531.1274541 [accessed 21 No-
vember 2008].

Internet

Artifact, 2009. Free, online project management, requirements management & more,
[online]. Available at: http://www.artifactsoftware.com/products/index.html [accessed
8 February 2009].

Buffett, W.E., 1983. Chairman’s letter, Berkshire Hathaway Inc. (to the stockholders
of Berkshire Hathaway Inc.) [online]. (Updated 29 February 2008) Available at:
http://www.berkshirehathaway.com/letters/letters.html [accessed 19 January 2009].

Dijkstra, E.W., 1993. E.W.Dijkstra archive: there is still a war going on (EWD 1165),
[online]. Available at:
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD11xx/EWD1165.html [ac-
cessed 19 October 2008].

Franklin, S. (IBM), 2005. Migrating a J2EE project from IBM Rational Rose to IBM
Rational XDE Developer v2003 part 1: introduction, [online]. Available at:
http://www.ibm.com/developerworks/rational/library/4285.html [accessed 11 Novem-
ber 2008].

LiquidPlanner, 2008. LiquidPlanner: online project management software, collabora-
tion, scheduling, [online]. Available at: http://www.liquidplanner.com/ [accessed 2
February 2009].

Merriam-Webster Online Dictionary, 2009. Methodology, definition from the Mer-
riam-Webster online dictionary, [online]. Available at: http://www.merriam-
webster.com/dictionary/methodology [accessed 1 February 2009].

Microsoft, 2007. What is Microsoft Office SharePoint Server?, [online]. Available at:
http://www.microsoft.com/sharepoint/prodinfo/what.mspx [accessed 1 February 2009].

MindTools, 2009. Influence maps, uncovering where the power lies in your projects,
[online]. Available at: http://www.mindtools.com/pages/article/newPPM_83.htm [ac-
cessed 22 February 2009].

RationalPlan, 2009. RationalPlan project management software, MultiProject ver-
sion, [online]. Available at: http://www.rationalplan.com/multi-project-management-
software.php [accessed 2 February 2009].

111

http://portal.acm.org/citation.cfm?id=1274531.1274541
http://www.artifactsoftware.com/products/index.html
http://www.berkshirehathaway.com/letters/letters.html
http://www.cs.utexas.edu/users/EWD/transcriptions/EWD11xx/EWD1165.html
http://www.ibm.com/developerworks/rational/library/4285.html
http://www.liquidplanner.com/
http://www.merriam-webster.com/dictionary/methodology
http://www.merriam-webster.com/dictionary/methodology
http://www.microsoft.com/sharepoint/prodinfo/what.mspx
http://www.mindtools.com/pages/article/newPPM_83.htm
http://www.rationalplan.com/multi-project-management-software.php
http://www.rationalplan.com/multi-project-management-software.php

References

The Omni Group, 2009. The Omni Group, OmniPlan, [online]. Available at:
http://www.omnigroup.com/applications/omniplan/ [accessed 2 February 2009].

Zoho, 2009. Online project management, collaboration, timesheet tracking, Zoho pro-
jects, [online]. Available at: http://projects.zoho.com/jsp/home.jsp [accessed 8 Febru-
ary 2009].

Journal and Newspaper Articles and Transactions

Boehm, B.W., 2008. Making a difference in the software century. Computer, [online],
41 (3), pp. 32-38. Available at:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4476221 [accessed 20 November
2008].

Boehm, B.W., 1988. A spiral model of software development and enhancement. Com-
puter, [online], 21 (5), pp. 61-72. Available at:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=59 [accessed 3 October 2008].

Brooks, F.P., 1987. No silver bullet, essence and accidents in software engineering.
Computer, [online], 20 (4), pp. 10-19. Available at:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1663532 [accessed 7 October
2008].

Bourque, P., et al., 2002. Fundamental principles of software engineering – a journey.
Journal of Systems and Software, [online], 62 (1), pp. 59-70. Available at:
http://www.gelog.etsmtl.ca/publications/pdf/978.pdf [accessed 25 November 2008].

Elton, D., 2008. IT projects must appeal to emotions to succeed. Financial Times in-
sert: digital business, [online]. 8 October, p. 2, p. 4. Available at:
http://media.ft.com/cms/f94b585c-9451-11dd-953e-000077b07658.pdf [accessed 24
November 2008].

Glass, R.L., 1994. The software-research crisis. IEEE Software [online]. 11 (6), pp.
42-47. Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=329400 [ac-
cessed 18 November 2008]

Hammer, M., 1990. Reengineering work: don't automate, obliterate. Harvard Business
Review, 68(4), pp. 104-112. Available at:
http://www.city.academic.gr/material/academic_staff/business_administration/morgan/
rmn/SHARED/Articles/hammer.pdf [accessed 5 February 2009].

Jones, C., 1995. Legal status of software engineering. Computer, [online]. 28 (5), pp.
98-99. Available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=384135 [ac-
cessed 4 November 2008].

112

http://www.omnigroup.com/applications/omniplan/
http://projects.zoho.com/jsp/home.jsp
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4476221
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=59
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1663532
http://www.gelog.etsmtl.ca/publications/pdf/978.pdf
http://media.ft.com/cms/f94b585c-9451-11dd-953e-000077b07658.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=329400
http://www.city.academic.gr/material/academic_staff/business_administration/morgan/rmn/SHARED/Articles/hammer.pdf
http://www.city.academic.gr/material/academic_staff/business_administration/morgan/rmn/SHARED/Articles/hammer.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=384135

References

Parnas, D.L., 1999. Software engineering programs are not computer science pro-
grams. IEEE Software, [online]. 16 (6), pp. 19-30. Available at:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=805469 [accessed 17 November
2008].

Speed, J.R., 1999. What do you mean I can't call myself a software engineer? IEEE
Software, [online]. 16 (6), pp. 45-50. Available at:
http://portal.acm.org/citation.cfm?id=624634.626062 [accessed 17 September 2008].

van Genuchten, M., 1991. Why is software late?, an empirical study of reasons for
delay in software development. IEEE Transactions on software engineering, [online].
17 (6), pp. 582-590. Available at:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=87283 [accessed 24 October
2009].

Research Papers

Abran, A., et al. eds., 2004. Guide to the software engineering body of knowledge,
SWEBOK. [online]. Available at: http://www.swebok.org/ [accessed 17 October 2008].

Wideman, R.M., 2002. Comparing PRINCE2® with PMBoK®, [online]. Available at:
http://www.adaptiveframeworks.com.au/prince2/P2vPMBOK.pdf [accessed 9 February
2009].

113

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=805469
http://portal.acm.org/citation.cfm?id=624634.626062
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=87283
http://www.swebok.org/
http://www.adaptiveframeworks.com.au/prince2/P2vPMBOK.pdf

Bibliography

Bibliography

Allen, T.T., 2006. Introduction to engineering statistics and Six Sigma, statistical
quality control and design of experiments and systems. London: Springer-Verlag Ltd.

Bratko, I., 2001. Prolog, programming for artificial intelligence. 3rd ed. Harlow, Es-
sex: Pearson Education Ltd.

Bugzilla, 2009. Bugzilla, [online]. Available at: http://www.bugzilla.org/ [accessed 2
February 2009].

Dijkstra, E.W., 1968. Letters to the editor: go to statement considered harmful. Com-
munications of the ACM [online]. 11 (3), pp. 147-148. Available at:
http://portal.acm.org/citation.cfm?id=362929.362947 [accessed 25 November 2008].

Edgewall, 2009. The Trac project, [online]. Available at: http://trac.edgewall.org/ [ac-
cessed 2 February 2009].

Gamma, E. & Helm, R. & Johnson, R. & Vlissides, J., 1995. Design patterns, ele-
ments of reusable object-oriented software. Reading, Massachusetts: Pearson Educa-
tion, Inc. / Addison-Wesley.

Pirsing, R.M., 1974. Zen and the art of motorcycle maintenance. London: Vintage.

114

http://www.bugzilla.org/
http://portal.acm.org/citation.cfm?id=362929.362947
http://trac.edgewall.org/

Abbreviations

Abbreviations

3D Three-Dimensional
AI Artificial Intelligence
BCG Boston Consulting Group
BCS British Computer Society
BI Business Intelligence
CAD Computer Aided Design
CERN Conseil Européen (pour la) Recherche Nucléaire
COBIT Control Objectives for Information and related Technology
COCOMO II COnstructive COst Model
CRM Customer Relationship Management
CS Computer Science
e-Business Electronic Business
EC Electronic Commerce
ERP Enterprise Resource Planning
GUI Graphical User Interface
HRM Human Resource Management
ICBF Implicit Corporate Business Factors
IDE Integrated Development Environment
IT Information Technology
ICT Information and Communication Technologies
MOSS Microsoft Office SharePoint Server
MS Microsoft
MVC Model-View-Controller
NASA National Aeronautics and Space Administration
NATO North Atlantic Treaty Organization
NB Nota Bene
n.d. no date
OS Operating System
PESTEL Political, Economic, Social, Technological, Environmental and Legal
PLM Product Lifecycle Management
PM Project Management
PMBOK Project Management Body Of Knowledge
PRINCE2 Projects IN Controlled Environments II
PSP Programming Systems Product
RUP Rational Unified Process
R&D Research and Development
RAD Rapid Application Development
ROI Return on Investment
SCM Supply Chain Management

115

Abbreviations

116

SE Software Engineering
SME Small and Medium Enterprises
SSADM Structured Systems Analysis and Design Method
STL Standard Template Library
SWE Software Engineering (abbreviation in Figure 7)
SWEBOK Software Engineering Body Of Knowledge
U.S. United States
UK United Kingdom
UML Unified Modeling Language
USA United States of America
XML Extensible Markup Language
XP Extreme Programming

Appendix A: Counterforce Decision Table
Origin Force Potential Reasoning Counterforce

Senior
Management /
Corporate
Finance

- Not enough time to train for new technologies used in the
project

- Unrealistic amendments to the project plan: e.g. not enough
resources/expertise, budget or development time

- Maximisation of revenues
through low cost develop-
ment

- Demands for high quality

- Usage of strategic tools to
emphasise long-term bene-
fits for the organisation for
strategically important
products

Customers

- Unrealistic demands in requirements (e.g. functionality not
listed in the specification)

- Unrealistic demands for delivery & deployment dates (e.g.
reduced quality assurance)

- Exerting pressure on Senior Management of the software
company

- Demand for high quality in
requirement fulfilment &
low error rate

- Demand for low cost
- Fast development, deploy-

ment and delivery within
deadlines

- Strategy assessment and
comparison with the poten-
tial of the product
-> long-term ROI opportu-
nities for the customer?

Software
Engineering /
Technical

- Overly optimistic cost/time estimations
- Too pessimistic estimations.
- Implementation of functionality not defined in the specifi-

cation: “experimenting around”
- Motivational issues with repetitive routine tasks

- Aim for technical brilliance
- Avoiding prolonged discus-

sions to justify estimations
- Desire to integrate creative

and innovative ideas

- Usage of strategic tools to
justify relevance of project
(e.g. reduced perfectionism
for low potential products)

Legal / HRM /
Marketing

- Marketing: demand for projects which are not in alignment
with the corporate strategy of the company or the customer

- HRM: danger of intervention in critical projects to push for
rigid implementation of HRM rules

- Legal: demand for rigid compliance impacting creativity,
inventiveness and motivation to innovate with technicians

- Demands for fair working
conditions

- Demand for innovative
products for promotion pur-
poses

- Demand for compliance
with laws and policies

- Usage of project-specific
factors to point out necessi-
ties for the particular pro-
ject(e.g. additional training
for implementing strategi-
cally important products)

117
Table 2 – Counterforce Decision Table

Appendix B: Use Case Diagram for IntelliPlan

Figure 54 – Use case diagram for IntelliPlan

118

119

Figure 55 – Class diagram for IntelliPlan

Appendix C: Class Diagram for IntelliPlan

Appendix D: Ethical Consent for Validation

The purpose of this document is to inform the participant about ethical implications
concerning the validation of the MSc Dissertation project. Two hardcopies are to be
filled in: one is to be retained confidentially by the student and one is to be handed out
to the participant.

Validation Details

Date:

Location: Manchester, UK

Professional status of participant: Industry expert

 Academic expert

1. The participant is to be informed about the main procedures. Have you fully
understood the validation procedures?

 Yes No

2. Your participation is voluntary. Please state if you agree to participate in this
validation.

 Yes No

3. This validation is not observational, but will rather be conducted in a coopera-
tive manner.

4. You may withdraw from this validation of research at any time and for any rea-
son.

5. You may omit questions you do not wish to answer during the interview.

6. Your data will be treated with full confidentiality and, if published, your data
will not be identifiable as yours.

7. If you wish, you will have the opportunity to be debriefed about the outcome of
the work you participated in (approximately from summer 2009).

-- --

Signature of student Signature of participant

120

Appendix E: Simulated Project Scenario

QualityProductions is a middle-sized software company which employs 22 people. The
organisation consists of the following departments:

• Business Management (3 people), Corporate Finance & Accounting (1 person)

• Technical Development (Software) (12 people)

• Marketing (3 people), HRM (2 people), Legal (1 person)

The company produces freeware tools and low-cost downloadable shareware. Some of
these products have the potential to become an off-the-shelf product for the mass-
market. One developer is working on these tools full-time.

One of the tools is named Quantify and has emerged into a data mining application
which is being sold to customers throughout the UK. The software is developed further
in ongoing research and development conducted by a team of two developers in full
time assignments.

The main proportions of revenues (75%) for the organisation originate from individual
software development and maintenance of bespoke software systems. QualityProduc-
tions is dependent upon two major clients for whom it fixes bugs and implements
change requests (development of new functionality). 9 developers are working full
time to serve the requirements of the two customers.

Recently, one of the major clients decided to assign a project to QualityProductions
concerning the development of a new bespoke back-end software system. To complete
this project, the management of QualityProductions is considering the hiring of two
more developers. Furthermore, it wants to distribute the remaining workload across the
9 developers who are familiar with the business area of the client. Also, the business
management department plans to withdraw the two resources allocated to the develop-
ment of Quantify for a period of four to six months with the option to continue the
work on Quantify in part-time assignments.

121

122

Appendix F: Contents of the CD

The CD contains an electronic version of this report in two different file formats (MS
Word document and PDF) as well as the software prototype IntelliPlan: the disc con-
tains a solution file for MS Visual Studio 2008 and a compiled binary version of the
application in form of an installation routine.
The application prototype IntelliPlan requires Microsoft .NET 3.5 to be installed.

	1 Introduction
	1.1 Key Contributions to the Body of Knowledge
	1.1.1 Primary Contributions
	1.1.2 Secondary Contributions

	1.2 The Work in the Context of the Academic Community
	1.3 Aim and Objectives
	1.4 Research Question
	1.5 Deliverables
	1.6 Research Methodology
	1.7 Ethical Considerations
	1.8 Intellectual challenge
	1.9 Chapter Overview
	1.10 Research Project Time Plan

	2 Literature Review: Consolidating Software Engineering
	2.1 Introduction
	2.2 Software Engineering: The Emergence of a New Discipline
	2.3 Software Process Models and Methods
	2.3.1 What Types of Programs require a Structured Development Approach?
	2.3.2 The Reasoning behind SE Models and Methods
	2.3.3 The Waterfall Model
	2.3.4 The Spiral Model
	2.3.5 Rational Unified Process
	2.3.6 Further Approaches of Models, Methods and Paradigms
	2.3.6.1 V-model
	2.3.6.2 Structured Systems Analysis and Design Method (SSADM)
	2.3.6.3 eXtreme Programming (XP)
	2.3.6.4 Rapid Application Development (RAD)

	2.3.7 Which Approach is the “Right One”?

	2.4 Difficulties Faced by the Discipline and Potential Solutions
	2.4.1 Individual Tasks and Technology
	2.4.2 The Nature of Software
	2.4.3 SE Models and Methods

	2.5 Academic Solutions or further Practical Problems?
	2.5.1 Body of Knowledge & Education
	2.5.2 Accreditation as a potential Silver Bullet

	2.6 Legal Implications
	2.7 The History of Engineering and Medicine in Contrast with SE
	2.8 The Potential Origin of Intrinsic Difficulties with SE
	2.8.1 Terminology
	2.8.2 Managerial Aspects
	2.8.3 Emotional Factors
	2.8.4 Future Outlook

	2.9 Summary and Conclusion
	2.9.1 The Measures to Improve the Situation with Software Engineering
	2.9.1.1 What the measures can achieve
	2.9.1.2 What the measures cannot achieve

	2.9.2 The Dilemma: Contradicting Methods
	2.9.3 The Research Question: Implicit Corporate Business Factors
	2.9.4 Concluding Thoughts

	3 Planning for Successful Commercial Software Engineering Projects
	3.1 Introduction
	3.2 Exemplifying Commercial SE Projects
	3.2.1 Business Application Development
	3.2.2 Commercial Real-Time Application Development

	3.3 What Constitutes a Successful Commercial SE Project?
	3.4 Common Planning Tools to Implement SE Methodologies
	3.4.1 Project Planning and Resource Management
	3.4.1.1 MS Project
	3.4.1.2 OmniPlan

	3.4.2 Collaborative Project Planning and Document Management
	3.4.2.1 Zoho Projects
	3.4.2.2 Artifact LightHouse
	3.4.2.3 MS SharePoint
	3.4.2.4 LiquidPlanner

	3.4.3 Cost Estimation: COCOMO II
	3.4.4 Additional Tools: Project Portfolio Management and Issue Tracking

	3.5 Suitability of Planning Tools for Commercial SE Projects
	3.5.1 Reaping Wheat versus Developing Software
	3.5.2 The Problems with Common SE Project Planning

	3.6 General Project Planning and Management Concepts
	3.6.1 PRINCE2 vs PMBOK
	3.6.2 Six Sigma and COBIT

	3.7 Conclusion

	4 Implicit Corporate Business Factors
	4.1 Introduction
	4.2 Factor 1: Conflicting Corporate Objectives
	4.2.1 Objectives of Corporate Finance and Senior Management
	4.2.2 Objectives of Software Engineering
	4.2.3 Objectives of Human Resource Management
	4.2.4 Objectives of Legal and Marketing Departments
	4.2.5 Conflicting Objectives: Potential Impact on SE Projects
	4.2.5.1 Corporate finance and senior management
	4.2.5.2 Software engineering
	4.2.5.3 Human resource management
	4.2.5.4 Legal and marketing departments

	4.2.6 Consolidation of Findings

	4.3 Factor 2: Corporate Strategies
	4.3.1 Industry Forces and Generic Strategies
	4.3.2 Portfolio Matrices: The Growth/Share matrix
	4.3.3 Competitive Advantage through the use of Information Technology

	4.4 Factor 3: Management
	4.4.1 Managerial Skills
	4.4.2 Potential Correlation between Project Types and Degree of Managerial Interference

	4.5 Factor 4: Human Beings
	4.5.1 The “People” – Factor
	4.5.2 Invisibility and Mutual Reliance among People
	4.5.3 Project-Specific Information

	4.6 Conclusion: Consideration in Planning
	4.6.1 Consideration
	4.6.2 Integration of Factors into Project Planning
	4.6.3 The Potential Link: Corporate Strategies

	5 Planning for High Quality in Commercial SE Projects
	5.1 Research Input and Overview
	5.2 Research Approach
	5.3 Planning for Quality
	5.3.1 Existing Definitions of High Quality Software
	5.3.2 A New Definition for High Quality in Software

	5.4 The Commercial Software Engineering Planning Framework
	5.4.1 Overview
	5.4.2 Solutions Provided by the Framework
	5.4.3 Approaches for Optimal Usage of the Framework
	5.4.3.1 Directional planning approach
	5.4.3.2 Problem-specific planning approach

	5.4.4 Stepwise Planning Model
	5.4.5 Generic Strategy Selection Tool
	5.4.6 Strategic Assessment Matrix
	5.4.7 Software Planning Forces Model
	5.4.8 Counterforce Decision Table

	5.5 The Software IntelliPlan
	5.5.1 Design Specification
	5.5.2 Details on the Development
	5.5.2.1 Choice of technology
	5.5.2.2 Development strategy
	5.5.2.3 Decisions on the program structure
	5.5.2.4 Data management and storage
	5.5.2.5 Code optimisation and maintainability
	5.5.2.6 Graphical user interface
	5.5.2.7 Memory management and resources
	5.5.2.8 Error handling

	5.5.3 Problems and Solutions
	5.5.4 Presentation of the Software

	5.6 Summary and Further Suggestions

	6 Testing and Validation
	6.1 Overview
	6.2 Validation Method
	6.3 Functional Test of IntelliPlan
	6.4 Semantic Validation by an Academic Expert
	6.5 Semantic Validation by Industry Experts
	6.6 Conclusion

	7 Conclusion and Future Outlook
	7.1 Key Contributions
	7.2 Reflection on Achievements and Research Answer
	7.3 Potential Commercial Value
	7.4 General Strengths and Weaknesses
	7.5 Recommendations for Further Research and Development
	7.6 Future Outlook
	7.7 Concluding Thoughts

